

PRECISE PACKER DETECTION USING MODEL CHECKING

Nguyen Minh Hai, Do Duy Phong, Quan Thanh Tho, Le Duc Anh

Ho Chi Minh City University of Technology, Vietnam

hainmmt@cse.hcmut.edu.vn, doduyphongbktphcm@gmail.com, qttho@cse.hcmut.edu.vn,

tintinkool@gmail.com

ABSTRACT Over the past decades, malware has been

becoming a real threat. It costs more than $10 billion in

each year and the damage is still increasing. Most of the

modern popular malwares are either packed or

obfuscated. The main goal of these obfuscation

techniques is to thwart the signature based technique of

anti-virus software. It also increases the difficulty of the

reverse engineering work since it often takes a very long

time for unpacking or decrypting a packed file. As a

counter solution, most of anti-virus software tends to

detect packer signature for verifying the packed malware.

However, since hacker can easily modify signature

header of packed file, this solution cannot determine

precisely whether a malware is packed or not. This paper

proposes a model checking method for packer detection

using a combination BE-PUM tool and model checker

NUSMV. BE-PUM (Binary Emulator for PUshdown

Model generation) is designed for generating a precise

control flow graph (CFG), under presence of typical

obfuscation techniques of malware e.g. indirect jump,

self-modification, overlapping instructions, and

structured exception handler (SEH), which are supported

in packers. Currently, BE-PUM can cover the patterns of

14 techniques mainly used in 27 packers e.g. UPX, FSG,

NPACK, ASPACK, PECOMPACT, PETITE, YODA,

TELOCK... Applying the temporal logic formula for that

patterns as properties of proposed model checker tool,

we can detects totally all the malwares which are packed

by these packers. We have implemented our technique

for automatically detecting packed malware. The

experiment results are encouraging.

1. INTRODUCTION

 Most of the modern popular malwares are either

packed or obfuscated. The main goal of these techniques

is to thwart the signature based technique of anti-virus

softwares. It also increases the difficulty of the reverse

engineering work since it often takes a very long time for

unpacking or decrypting a packed file. As a counter

solution, most of anti-virus software tends to detect

packer signature for verifying the malware. However,

since packer can be utilized in normal software for

protecting against hacking and invalid cracking, this

solution cannot determine precisely whether a packed

target is a malware or not.

 According to [1,2] malware is packed by many kinds

of packers. Among them, the most popular packers are

UPX1, PECOMPACT2, TELOCK3, FSG4, YODA’s

Crypter and Protector and ASPACK. The packer

transforms the targeted file into another compressed

executables which preserves the original functionality.

This new packed binary contains a restoration loader

stub which decrypts the original file with different

algorithms specific to each packer. After unpacking, it

then transfers the control flow to original entry point.

Moreover, many packers e.g. TELOCK, YODA's

Crypter are provided with a armored stub for protecting

against straightforward reverse engineering, cracking

and tampering with many special techniques of

anti-debugging and anti-reversing trick.

 In this paper, we introduce a new method of packer

detection on 2000 real-world malwares. We combined

two tools, BE-PUM for CFG generation and model

checker NUSMV for packer detection. The rest of this

paper is organized as followed. Section 1 briefly

describes the packers and techniques which are used in

them. Section 2 introduces the tools BE-PUM and

NUSVM which are used for detecting obfuscation

techniques. In the next section, section 3 and section 4,

we presents our techniques for identifying packers.

Section 5 shows our experiments on 2000 malwares

taken from Loria. The final section is the conclusion of

our paper.

1.1 Overview of packers:

 A packer is a software that can mutate a binary file

into another executable. The new executable preserves

the original file’s functionality, but has a different

content on the system. This feature prevents the process

of linking between them. Packers are used on executable

for mainly two reasons: to reduce the size of binary file,

and to evade analysis, reverse engineering, or detection.

For the first reason, packer minimizes targeted file by

compressing its content and then uncompressing it

on-the-fly during the execution. However, existing

real-world packers are used mainly for the second reason,

i.e. to protect the original file from being observed,

analyzed and tampered with. For achieving this goal,

packer combines many obfuscation methods which

include anti-debugging, anti-cracking, anti-tracing,

anti-reverse engineering, and more for preventing target

file from straightforward analysis. These packers are

used for protecting the licensed softwares or games from

crackers. However, this feature is also exploited in

malware for protecting them from detection of anti-virus

software. From [1], 79 % of malwares use packing

techniques for evading the detection.

1.2 Packer obfuscation techniques:

 Packer contains many obfuscation techniques, which

make binary code difficult to explore. Packer techniques

are investigated in [3], and with our observation on

malware, we categorize them into 6 groups such that

each group consists of element techniques below. We

will briefly explain each element technique

 Entry/code placing obfuscation which is Code

layout consists of overlapping functions,

overlapping blocks, code chunking and

Dynamic code consists of overwriting and

packing/unpacking.

 Self-modification which is Dynamic code and

overlapping blocks.

 Instruction obfuscation which is also called as

indirect jump.

 Anti-tracing consists of SEH (structural

exception handling) and 2 APIs (the use of two

special APIs comprises of LoadLibrary

function which base module is kernel32.dll and

GetProcAddress function which base module is

kernel32.dll.

 Arithmetic operation which is obfuscated

constants and checksumming.

 Anti-tampering which is checksumming,

anti-debugging, anti-rewriting. Anti debugging

comprises of timing check and hardware

breakpoints.

 Anti rewriting further consists of stolen bytes

and checksumming.

2. OVERVIEW OF BE-PUM AND NUSMV

2.1 BE-PUM

2.1.1 Contributions:

 Nowadays, malware detection is not simply signature

based detection. The malware detection focuses on

constructing the precise control flow graph of malware

which are obtained by disassembly. This statiscial

method is used widely in commercial as profiency

technique to disassembly the malware and generate the

control flow graph as model of malware, e.g. some

commercial dissamblers tool like IDA Pro, HOPPER, as

well as non-commercial using likes METASM, Capstone,

Unicorn or Jackstab. However, it is easily cheated by

typical obfuscation techniques or anti-reversing

techniques. As mentioned above, malware uses packers

to obfuscate them for preventing disassembling.

 BE-PUM (Binary Emulator for Pushdown Model

Generation) is the framework which can handle all of

obfuscation techniques. BE-PUM can also unpack

completely the packer and generate the precise model for

packer which other popular disassembler tool i.e. IDA

Pro, Jackstab fails. BE-PUM has implemented many

techniques to bypass all of the obfuscation, especially

anti-reversing techniques. The techniques implemented

in BE-PUM are the combination of on-the-fly control

flow graph generation, dynamic symbolic execution

(concolic testing), formal x86 instruction and API calling

as the special stub.

2.1.2 BE-PUM Architecture:

 BE-PUM implements the CFG reconstruction based

on concolic testing with SMT Z3 as a backend engine to

generate a test instance for concolic testing. Core of

BE-PUM is framework Jackstab, it also a preprocessor

to compute a single-step disassembly. The Fig. 1 shows

the architecture of BE-PUM, which consists of three

Fig. 1 BE-PUM architecture.

components: symbolic execution, binary emulation, and

CFG storage. The symbolic execution picks up one from

the frontiers (symbolic states at the ends of explored

execution paths), and it tries to extend one step. If the

instruction is a data instruction, it will simpy

disassemble the next instruction. If the instruction is a

control instruction, the concolic testing is applied to

decide the next location. Note that some variable does

not appear in the path-condition, the SMT will not return

its value. If the concolic testing needs this value,

BE-PUM terminates. When either a new CFG node or a

CFG edge is found, they are stored in CFG storage and a

configuration is added to the frontiers. This procedure

continues until either the exploration has converged, or

reaching to unknown instruction, system calls, and/or

addresses.

2.1.3 Limitation:

 There are several limitations in BE-PUM. First, the

number of X86 instructions are about 1000 and Windows

API are more than 4000. Current BE-PUM covers only

200 x86 instructions and 400 APIs. They are selected by

the frequency appearing in malware from VX Heaven.

Second, BE-PUM needs to support methods of handling

loop invariant. These are the future works.

2.2 NuSMV

 NuSMV is an open source tool for the model

checking on finite state systems. NuSMV only accepts

NuSMV model which described by SMV language. With

the correct NuSMV model and the specification which

expressed in temporal logics formula, NuSMV supports

CTL model checking and LTL model checking. As the

big advantage, SMV syntax is clear and it can be easily

applied for expressing the model of binary file.

3. COMBINATION OF BE-PUM AND NuSMV

 Recall that BE-PUM is a powerful dissasembler tool,

which can generate the precise model as CFG for

Portable Executable (PE) file. Especially, BE-PUM can

handle all the malware techniques. Moreover, BE-PUM

is open source and it can be supported by any model

checking tool by integrating the model checking tool into

BE-PUM. Consequently, the model checker NuSMV is

applied for detecting packers based on the observed

packer’s behavior and the precise packer model

generated from BE-PUM. By collecting the patterns of

packing techniques and expressed them in the temporal

logic formulas which can be used by NuSMV for model

checking, we can conclude that whether the file is

packed or not.

3.1 BE-PUM model to JSON data:

 JavaScript Object Notation abbreviated by JSON is a

syntax for storing and expressing the data. BE-PUM

convert the model into the JSON data which is more

readable and portable. Then JSON data can be used as

input of our model checking tool for generating an

precise SMV model as general input of NuSMV model

checker.

3.2 BE-PUM model to SMV model:

 NuSMV takes the input of MV model for the

checking process. This section introduces about the SMV

model, how it is related to the BE-PUM model, and we

propose a method to convert the JSON model to SMV

model.

3.2.1 SMV Model:

 SMV model basically is same as BE-PUM model

which consists of nodes and edges. A node in NuSMV

model is a state defined by addr is the location of an

instruction, mnem is instruction’s identifier and op is

operand of instruction. An edge in SMV model is the

connection between two nodes of SMV model defined

by src and dest. Fig. 2 is the example of SMV model (b)

related to BE-PUM model (a)

Fig. 2 SMV model generated by BE-PUM model.

3.2.1 SMV Model construction:

 Before we can apply the model checking on NuSMV,

it is very important to make the SMV model more

general. By abstracting the register, segment register,

immediate value and API calling, as well as abstracting

the type of instruction, the problem can be solved. The

main idea is to categorize and abstract the instruction

identifier and instruction’s operands. Mnemonic of

instruction is categorized by type of instruction. The

mnemonic will be categorized based on the x86

instruction handler of BE-PUM. Operand of instruction

is also categorized by name of operand. The type of

register comprises of 16 registers which supported in

BE-PUM, in which the type of segment register consists

of 6 segment registers; the immediate value is the

hexadecimal values, and API calling is any of calling

API in the execution. Fig. 3 is the example of applying

to SMV model after categorizing the instruction and

operands of instruction.

Fig. 3 SMV Model with categorized instruction.

4. PACKER DETECTION WITH NuSMV and

BE-PUM:

 Structured Exception Handling (SEH) technique can

be detected by three sequence instructions. Assumming

that statement A is push immediate value to stack,

statement B is push fs:[0] value to stack and statement C

is move esp value to fs:[0]. The CTL formula to specify

the SEH technique can be described is EF(A ˄ EF(B ˄

EF(C))), and LTL one is F(A ˄ F(B ˄ F(C))). Indirect

Jump technique can be detected by indirect call and

indirect jump. Assumming that statement A is call to near

address stored in register, statement A’ is jump to near

address stored in register also. The CTL formula to

specify the Inidrect jump technique can be described is

EF(A) ˅ EF(A’) , and LTL one is F(A) ˅ F(A’).

Anti-debugging technique can be detected by detecting

any of calling API IsDebuggerPresent. Assumming that

statement A is IsDebuggerPresent API calling. The CTL

formula to specify the anti-debugging technique can be

described is EF(A), and LTL one is F(A). Stolen bytes

techniques which is VirtualAlloc API using and Timing

check which is GetTickCount API, are also specified by

CTL, LTL formula same as above. Obfuscated constants

technique can be detected by any of instruction whose

operand’s value is a constant value. Assuming that

statement A, A’, A’’ is the instruction whose first operand,

second operand and third operand is immediate value.

The CTL formula to specify the Obfuscated constants

technique can be described is EF(A) ˅ EF(A’) ˅ EF(A’’) ,

and LTL one is F(A) ˅ F(A’) ˅ F(A’’). Two Special APIs

technique can be detected by detecting any of calling

two APIs LoadLibray and GetProcAddress. Assuming

that statement A is LoadLibrary API calling and

statement B is GetProcAddress API calling. The CTL

formula to specify the Two special APIs technique can

be described is EF(A ˄ EF(B)) , and LTL one is F(A ˄

F(B)) .

5. Experiments:

 We perform experiments of packer analysis on 27

packers and packer detection based on model checking

method by combining the BE-PUM and model checker

NuSMV on 2000 real-world malware from LORIA

collection. Our experiments are performed on Windows

XP with Intel Core i5 – 2450M 2.5GHz, 2GB RAM. Fig.

4 shows the statiscial of 14 techniques widely used in 27

packers. Fig. 5 shows show the statiscial of packer

detection on 2000 real-malwares. In general, our method

produces the good result.

Fig. 4 Statiscial for 14 techniques of 2000 real-malware.

Fig. 5 Statiscial for packer detection of 2000 malwares.

CONCLUSION

 In this paper, we have presented a new method for

packer detection using a combination BE-PUM tool and

model checker NUSMV. BE-PUM applies concolic

testing and on-the-fly model generation for handling

obfuscation techniques i.e. indirect jump and

self-modifying codes which can cover the patterns for 14

techniques mainly used in 27 packers e.g. UPX, FSG,

NPACK, ASPACK, PECOMPACT, PETITE, YODA and

TELOCK. We have performed the experiments for 2000

real-world malwares. The experiment results show that

our approach is very encouraging.

REFERENCES

[1] Anti-virus technology whitepaper. Technical report,

BitDefender, 2007.

[2] Maik Morgenstern and Andreas Marx. Runtime

packer testing experiences. In 2nd International CARO

Workshop, pages 288–305, 2008. LNCS 6174.

[3] K.A. Roundy and B.P. Miller. Binary-code

obfuscations in prevalent packer tools. In ACM Comput.

Surv, volume 46, pages 4:1–4:32, 2013.

Dr. Quan Thanh Tho is an

Associate Professor in the

Faculty of Computer Science

and Engineering, Ho Chi Minh

City University of Technology

(HCMUT), Vietnam. He

received his B.Eng. degree in

Information Technology from HCMUT in 1998 and

received Ph.D degree in 2006 from Nanyang

Technological University, Singapore.

Nguyen Minh Hai is a Phd

student at Ho Chi Minh University

of Technology (HCMUT). He is

also a lecturer at Ho Chi Minh

University of Industry.

Anh Duc Le received B.Eng. and

M.Sc. degrees in computer science

from Ho Chi Minh City University

of Technology and Tokyo

University of Agriculture and

Technology 2011 and 2014,

respectively. Since April 2014, he

has been a Ph.D. student in the

Department of Electronic and Information Engineering

at Tokyo University of Agriculture and Technology.

Do Duy Phong is a senior student

from Ho Chi Minh City

University of Technology.

