
A STUDY OF A NATIVE DOCKER CLUSTERING SYSTEM
ON A POWER-CONSTRAINED ENVIRONMENT

Chanwit Kaewkasi, Wichai Srisuruk, Bhuridech Sudsee, Pathawee Ngoenthai
School of Computer Engineering, Suranaree University of Technology

chanwit@sut.ac.th, wichai@sut.ac.th, m5741861@sut.ac.th, m5741847@sut.ac.th

ABSTRACT A data center is a vital component for
business. A corporate usually prefers a private data
center to secure its data, but it is costly to operate its own
data center. The expenditure covers constructing the
building, purchasing server machines and devices as well
as the operating, electricity and system cooling cost. This
raises the importance of applying low-powered CPUs to
build a computing cloud.

A cloud platform usually employs virtualization
technologies to utilize its resource sharing. Among
widely used hypervisor-based virtualizations, there is
another efficient technique, the OS-level virtualization.
This paper focuses on a clustering technology based on
Docker Swarm, hereinafter referred as Swarm. It is the
native clustering solution developed by Docker inc. in
collaboration with our laboratory and other contributors.

This paper describes the work and experimental
results of studying Swarm in the context of a power-
constrained environment. One of the finding is that
Swarm scales linearly even on a 50-node cluster. The
experimental results showed that Docker Swarm can
form a cluster effectively. It is also showed that Swarm
scales linearly even on a 50-node 32-bit ARMv7 cluster.
The study also found that our 32-bit cluster hits the
limitation of running containers at maximum 93
containers per node.

1. INTRODUCTION
A data center is a vital component for business.

Beside server machines, it consists of other supporting
systems, such as the redundant power supply, the cooling
system as well as the security systems (Bullock, 2009). A
corporate usually prefers a private data center to secure
its data, but it is costly to operate its own data center. The
expenditure covers constructing the building, purchasing
server machines and devices as well as the operating cost.
This leads to an expectation that the number of data
centers will be increasing until 2017, then decreasing
afterwards (Villars & Shirer, 2014) (Smolaks, 2014). One

of the main reasons is the economy burden of operating a
data center. Its operation and maintenance cost is fixed
despite no one in the corporate uses it.

Cloud computing is a solution to solve the cost of
building a corporate-owned data center. A cloud platform
usually employs virtualization technologies to utilize its
resource sharing (Marinescu, 2013). Among widely used
hypervisor-based virtualizations, there is another efficient
technique, the OS-level virtualization, to manage the
cloud's resources. Docker is an implementation of such
technique, which is called containerization instead of
virtualization. As this technique shares the same kernel of
the host machine, Docker can start a new container
without spending time to boot the machine layer (Felter
et al., 2014). To form and manage a cluster of Docker
instances, it can be done using Docker Swarm (Vieux et
al., 2014), hereinafter referred as Swarm. Swarm is the
native clustering solution developed by the same Docker
developer team with helps of individual contributors. As
reported by Kaewkasi (2015), Swarm is also able form a
cross-platform hybrid cluster, which utilizes both ARM
and x86 hardware underneath but serve as a single
manageable Docker instance. Previous works reported by
Kaewkasi & Srisuruk (2014a) and Kaewkasi & Srisuruk
(2014b) encountered difficulties to manage software
stacks on ARM-based clusters as the constrained
environment is not suitable for hypervisors. These
previous works motivated us to study a Docker-based
virtualization cluster, Swarm, in terms of processing
overhead and scalability on an ARM-based cluster.

This paper describes the work and the experimental
results on a study of Swarm in the context of a power-
constrained environment. Experiments have been
conducted to find out answers for the following research
questions. Firstly, how large is the overhead of a single-
node Swarm over Docker compared to a plain Docker
instance in the low-power environment? Secondly, how
does a Swarm cluster behave in term of scalability when
deploying short-lived containers to it? Finally, what is the

behavior and limitation of an ARM-based Swarm cluster
under steady loads? One of the main contributions of this
paper is the finding that Swarm scales linearly even on a
50-node cluster.

The remainings of this paper are organized as follows.
Section 2 discusses related works. Section 3 reviews
Swarm, the native clustering system for Docker. Section
4 discusses the technical configuration of the system
prepared for the experiments. Section 5 discusses the
experiments and their results. This paper ends with
Section 6 for discussion, conclusion and future works.

2. RELATED WORKS
As Swarm is still being developed, there is no

scientific study on a Swarm cluster yet. This section
reviews works related to Docker-based clusters in
general.

Liu and Zhao (2014) were trying to create a cloud
computing system using two high-end machines. They
created 6 containers on each of them. Each container
open ports ranging from 49153-65535 to allow data
communication with the host. They have found that
containers performed faster than virtual machines with
the same applications and settings. Our work goes further
by studying Swarm to form a Docker cluster.

Williams (2015) designed a cluster architecture using
heterogeneous hardware. The author used an ARM and
another x86 machine to form a Swarm cluster. But he
employed Powerstrip (Marsden, 2015), an API
prototyping tool for Docker, to intercept calls from
Swarm, so the architecture is incurred from extra
overheads generated by Powerstrip.

Falck (2014) developed an ARM cluster with 4 boards
of Raspberry Pi and installed Docker on them. The author
used SaltStack to manage the cluster. However there was
no study of the performance of SaltStack. The work
described in this paper used Swarm to form the cluster
and studied its characteristics.

Recently, Kaewkasi (2015) has created a Cross-
platform Hybrid Cloud using Swarm and Docker. The
cluster was formed atop a 50-node Aiyara cluster (ARM)
and another 50 DigitalOcean nodes. Swarm was tweaked
to make it able to place a certain container image to a
right platform. In his work, there was no performance
measurement of the cluster yet. Differ from Kaewkasi
(2015), the work described here in this paper measured
Swarm characteristics and used the same ARM hardware
but excluded the DigitalOcean nodes.

Google has also developed Kubernetes (Bernstein,
2014) to support clustering Docker instances. However,
there is no performance study of Kubernetes available
yet.

3. DOCKER SWARM
Swarm (Vieux et al., 2014) is a clustering system

natively built for Docker. It has been developed using an
open process, which allows one of the authors to join the
development of the project since the beginning. To make
this paper self-contained, the structure of Swarm is
described here in this section. A Docker instance running

on a Node is called an Engine. In this paper, we use the
terms Docker Engine and Docker instance
interchangeably.

There is an assumption that each machine (Node) will
start only one Engine. There is a SwarmAgent running via
the swarm join command on each Node. A
SwarmAgent is responsible for advertising the address of
the Engine on its Node by registering the address to a
Discovery service. A Discovery service is a store that
keeps a list of healthy Engines. The SwarmManager will
retrieve the list of Engines to form the cluster as a virtual
Docker host. Any DockerClient can just interact with this
virtual host as it is another Docker Engine.

SwarmManager is responsible for selecting a certain
Engine to place a newly created container. During this
process, it applies a set of Filters to available Engines so
that an Engine is chosen for conditions specifying as
Constraint or Affinity expressions.

Figure 1. A block diagram of cluster configuration

4. CLUSTER CONFIGURATIONS
Cluster configurations based on Swarm are discussed

in this section. Figure 1. shows the block diagram
illustrating Swarm acting as a single virtual endpoint for
50 instances of Docker running on the physical cluster.
Each Docker instance is registered to the central
Discovery Service, from where Swarm retrieves the list of
Docker nodes. A Docker client then will be able to talk to
Swarm because it now serves the similar interface as a
normal Docker host. Figure 2. Block diagram illustrating
the 50-node physical cluster proxied by Swarm.

The Docker client runs on a 3.2 GHz x86 64-bit Linux
machine with 4GB RAM. We installed the official
Docker engine version 1.6 on it. On this 50-node ARM
cluster, we use the Aiyara cluster model (Kaewkasi &
Srisuruk, 2014a), which is built atop a set of ARM
Cortex-A7 dual-core 1 GHz processors. The Docker
engine running on the ARM cluster is a custom build
based on Docker 1.6.

int main() {
 struct timespec time1;
 time1.tv_nsec = 500000000L;
 return nanosleep(&time1, null);
}

Figure 2. Cluster payload with nanosleep for 500 ms.

FROM nikitav/busybox-arm
ENV LD_LIBRARY_PATH /lib
COPY nanosleep /
ENTRYPOINT /nanosleep

Figure 3. Cluster payload nanosleep for 500 ms.

In the experiments, a payload for the ARM cluster has
been prepared as a program that sleep for exactly 500 ms
using the system call nanosleep as described in Figure 2.
After preparing the nanosleep executable, a Docker
image containing the executable was prepared using the
following Dockerfile. The Docker image is built and
named aiyara/nanosleep500ms, as described in
Figure 3.

5. EXPERIMENTS
This section describes three experiments in

corresponding to three research questions. The questions
are restated as the following. RQ1: how large is the
overhead of a single-node Swarm over Docker compared
to a plain Docker instance in the low-power
environment? RQ2: how does a Swarm cluster behave in
term of scalability when deploying short-lived containers
to it? RQ3: what is the behavior and limitation of an
ARM-based Swarm cluster under steady loads?

5.1 Overhead on a single node
The first experiment was conducted to answer RQ1:

how large is the overhead of a single-node Swarm over
Docker compared to a plain Docker instance in the low-
power environment?

To measure a plain Docker, the experiment started by
installing the Docker engine on an ARM board. Then
started a payload container, aiyara/nanosleep. The
container runtime is measure using the time command:

$ time `docker run aiyara/nanosleep`

 The container was deleted by a separate command,
docker rm, after finish. The experiment was repeated
20 times.

To measure a single-node Swarm, a Docker engine
was provisioned using Docker Machine with our Aiyara
driver. Docker is setup this way because it is a method
suggested by the Docker orchestration workflow. Swarm
retrieves the node address via an instance of ZooKeeper,
a discovery service. The ZooKeeper discovery service
was chosen because it is a development done by our team
for the Docker Swarm project.

The ZooKeeper instance served at TCP port 2181.
The Swarm manager was started on the x86 machine.

Then the Docker client connected to the Docker Engines
via Swarm, rather than directly connected to each Engine.
The same payload container was started through Swarm.
This step was repeated 20 times.

Figure 4 shows the result from the experiment 1. The
result showed that controlling containers via Swarm
averagely took 2,507 milliseconds with insignificant
standard derivative. In the case of controlling the plain

Docker without Swarm, it averagely took 1,333
milliseconds. It is obvious that the overhead caused by
Swarm is around 1.88 times of the using plain Docker as
Swarm introduced another layer of processing via the
network.

Figure 4. The experimental result of a single-node Swarm
compared to a Docker instance.

5.2 Overhead when running short-live containers
overhead on a single node

The second experiment was conducted to answer
RQ2: how does a Swarm cluster behave in term of
scalability when deploying short-lived containers to it? A
short-live container means the container will be run for a
short period of time, in this case 500ms. Then the
container will be left there inside Docker with the
Exited state. There are 5 rounds in this experiment,
number of nodes were scaled gradually from 10 to 50. On
each round, 625 containers were created and run spreadly
across Docker Engines. We chose this number of
containers to make the cluster imbalance during the
experiments. Tests were repeated 5 times.

Figure 5. Time distribution used by running short-live
containers in the experiment 2.

The results from this experiment are shown in Figure
5 and 6. In Figure 5, it presents the distribution of
running time for each container in dots. It is clearly that
running times went high at the beginning of the
experiment because the joining process by each
SwarmAgent. According to Figure 6, if the number of
containers per node increases Swarm will take more time
managing them. Also, if the number of nodes in the

cluster increases while the number of containers is a
constant, the running time and overhead of Swarm will
decrease. Table 1. shows number of containers per node
and the average runtime of each container.

Figure 6. Average time of running short-live containers in
the experiment 2.

Table 1. The result of the experiment 2 showing average
number of containers per node and the average run time

of each container.

Nodes # Containers per node Average run time per

container

(millisecond)

10 62.50 2,630.31

20 31.25 2,520.64

30 20.84 2,490.76

40 15.63 2,481.49

50 12.50 2,475.13

5.3 Scalability under steady loads
The third experiment was to answer the third research

question RQ3: what is the behavior and limitation of an
ARM-based Swarm cluster under steady loads?

The setup for this experiment was similar to that of
the experiment 2, but changed from running short-live
containers to long-live containers and focused on the
maximum number of containers on each node. Instead of
measuring runtime, we measured starting time in this
experiment.

The payload used in each long-live container is the
sh command running in background. This means that
each container would be in the memory forever until
manually removed. The experiment started by forming a
10-node cluster, each of them gradually started containers
until its number reached 90. The main reason the number
of containers per node is capped to this number because
the hardware of a node is 32-bit. If the number of
containers goes beyond 93, a node will fail because the
default stack allocation of pthread is at 13 MB and it
makes the system ran out of memory.

The result of this experiment is shown in Table 2 and
illustrated in Figure 7. From the result, it is found that
adding nodes to the cluster significantly reduced stress of
the cluster when starting new containers. Spikes at the

beginning of the graph, the red wall, caused by each
SwarmAgent joining the cluster. There was some spikes
during the testing of the 30-node configuration too. It was
caused by a networking problem during the experiment.

Figure 7. The graph illustrating the scalability of nodes
on a Swarm cluster at 90 containers per node.

Table 2. The summary of the container starting time at 90
containers per node in average.

Nodes Average starting time of the a container (milliseconds)

10 1,483.72

20 1,421.35

30 1,442.19

40 1,388.92

50 1,397.41

6. CONCLUSION AND FUTURE WORK
This paper presented a work of studying a clustering

system for an implementation of the OS-level
virtualization, Docker, on a low-power cluster. Three
experiments have been conducted to find overheads and
scaling characteristics of Swarm on a 50-node cluster.
The results showed that Swarm scales linearly even in a
constrained environment, an ARM-based cluster. The
overhead, 1.17 second, of a single-node Swarm is 1.88
times compared to plain Docker on an ARM node. This
overhead came from network connection and the node
selection mechanisms inside Swarm.

Running short-live containers also affected the
performance of the Swarm cluster. Swarm took 2.47 and
2.63 seconds when the average number of containers per
node is 12.5 and 62.5 respectively.

Starting long-live containers put stress on the cluster,
but increasing number of nodes significantly reduced the
stress. From these three experiments, it can be concluded
that Swarm scales linearly even on the power-constrained
50-node cluster. It is really interesting to investigate that
how large the size of a cluster Swarm could properly
handle, both in its standalone Swarm mode and the mode
that uses the scheduler of Mesos (Hindman et al., 2011).

There are several open questions motivated by the
work reported in this paper. The maximum number of
containers under a 32-bit ARM board is around 93. To
make a 32-bit board be able to use as a better

experimental platform, the default stack size of
pthread used by Docker would be tweakable. When
forming a cross-platform hybrid cloud, the power
consumption characteristic of the cluster is also
interesting to study. Moreover, there is high latency
around the time of deploying first containers on each
node. This is also an interesting issue for further
investigation.

REFERENCES
D. Bernstein, “Containers and Cloud: From LXC to

Docker to Kubernetes,” IEEE Cloud Computing, vol. 1,
no. 3, pp. 81–84, Sep. 2014.

M. Bullock, “Data Center Definition and Solutions,”
Aug. 2009. [Online]. Available: http://www.cio.com
/article/2425545/datacenter/data-center-definition-and-
solutions.html

M. Smolaks, “Number of data centers to decrease
after 2017,” Nov. 2014. [Online]. Available:
http://www.datacenterdynamics.com/appcloud/number-
of-data-centers-to-decrease-after-2017/91495.fullarticle

K. Falck, “A Private Raspberry Pi Cloud with ARM
Docker,” Jul. 2014. [Online]. Available: http://sc5.io/
posts/a-private-raspberrypi-cloud-with-arm-docker

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,
“An Updated Performance Comparison of Virtual
Machines and Linux Containers,” IBM Research
Division, Austin Research Laboratory, Austin, TX,
Research Report RC25482 (AUS1407-001), Jul. 2014.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica,
“Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center.” in NSDI, vol. 11, 2011, pp. 22–22.

C. Kaewkasi and W. Srisuruk, “A study of big data
processing constraints on a low-power Hadoop cluster,”

in Computer Science and Engineering Conference
(ICSEC), 2014 International, Jul. 2014a, pp. 267–272.

C. Kaewkasi and W. Srisuruk, “Optimizing
performance and power consumption for an ARMbased
big data cluster,” in TENCON 2014 - 2014 IEEE Region
10 Conference, Oct. 2014b, pp. 1–6.

C. Kaewkasi, “Cross-Platform Hybrid Cloud with
Docker,” May 2015. [Online]. Available:
http://java.dzone.com/articles/cross-platformhybrid-cloud

D. Liu and L. Zhao, “The research and
implementation of cloud computing platform based on
docker,” in 2014 11th International Computer Conference
on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP), Dec. 2014, pp. 475–478.

D. C. Marinescu, “Chapter 5 - Cloud Resource
Virtualization,” in Cloud Computing, D. C. Marinescu,
Ed. Boston: Morgan Kaufmann, 2013, pp. 131–161.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/B9780124046276000051

L. Marsden, “Powerstrip: prototype Docker
extensions today,” Feb.
2015.[Online]. Available: https://clusterhq.com/2015/
02/02/powerstripprototype-docker-extensions-today/

V. Vieux and et. al, “Docker Swarm: a Docker-native
clustering system,” Dec. 2014. [Online]. Available:
http://github.com/docker/swarm

R. L. Villars and M. Shirer, “IDC Finds Growth,
Consolidation, and Changing Ownership Patterns in
Worldwide Datacenter Forecast,” Nov. 2014. [Online].
Available: http://www.idc.com/getdoc.jsp?containerId=pr
US25237514

M. Williams, “Heterogenous Docker Swarms
Teaser,” Apr. 2015. [Online]. Available:
http://matthewkwilliams.com/index.php/2015/04/28/heter
ogenousdocker-swarms-teaser/

