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ABSTRACT 
Field-based inspection requires some location-based 
applications, such as geo-tagged image acquisition, 
database interface, and navigation. Thus, we focus on 
ground investigation and inspection using mobile 
devices. In this paper, we propose and evaluate our 
location-based investigation application for Sabo facility 
management. 
 
1. INTRODUCTION 
 
 Infrastructure asset management is a framework for 
achieving sustainable infrastructure, such as roads, 
bridges, railways, and water treatment facilities. In 
particular, the control of erosion and sediment is called 
Sabo. The Sabo is one of significant topics in 
infrastructure inspection. During infrastructure 
inspection, we generally refer to the latest inspection 
documents to determine an inspected position, as follows. 
First, the structure to be inspected is detected after the 
inspector’s arrival in the inspection area. Next, an 
inspected point is detected in the structure. Then, the 
condition of the inspected point is recorded and 
compared with the latest inspection. After that, a 
geo-tagged photo is captured at the inspected point. A 
conventional flow for ground-based infrastructure 
inspection is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Ground-based infrastructure inspection 

 Generally, the management focuses on the low 
life-cycle cost in a process of construction, maintenance, 
rehabilitation, and replacement. Based on this framework, 
a 3D geometric model is often generated based on 
construction information modeling (CIM). Moreover, 
asset attributes, such as deterioration, condition, and age 
are acquired. To check the position of structures and 
structural elements and collect data related to these 
structures in frequent monitoring, there is a need to refer 
to maps, engineering drawings, databases, and technical 
documents (Garrett et al. 2002). Reliability, 
completeness, efficiency, and cost are significant indices 
in monitoring. The reliability, completeness, and 
efficiency can be satisfied using terrestrial LiDAR, a 
vehicle-borne mobile mapping system, and aerial 
photogrammetry using an unmanned aerial vehicle. 
 In the current state, although 3D scanners can acquire 
high resolution data, it is not easy to acquire details of 
asset attributes with 3D measurements. Thus, we focus 
on ground investigation and inspection using mobile 
devices (Kamada et al. 2013). Field-based inspection 
requires some location-based applications, such as 
geo-tagged image acquisition, database interface, and 
navigation (Hammad et al. 2006). Mobile devices, such 
as tablet PCs, smart phones, and global positioning 
system cameras, have the potential to assist inspectors in 
infrastructure asset monitoring because of their built-in 
sensors and components that include cameras, GPS 
receivers, gyro sensors, Wi-Fi, microphones, speakers, 
vibrators, and large storage. Therefore, we aimed to 
assist investigators in infrastructure asset monitoring 
with location-based applications using mobile devices. 
 
2. METHODOLOGY 
 
 Our proposed methodology for location-based 
infrastructure inspection is described in Figure 2. Our 
methodology consists of inspection operations with 
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mobile devices and mapping with images to improve 
conventional inspection approaches. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Proposed methodology 
 
2.1 Mobile inspection application 
 The functions and performance of infrastructure 
inspection assistance with a mobile device, such as a 
tablet PC equipped with GPS, are summarized in Table 1. 
Category A indicates essential functions and category B 
indicates additional functions. In addition, we propose a 
data model for our Web GIS-based mobile inspection 
application to satisfy the above-mentioned functions, as 
shown in Figure 3. 
 

Table. 1 Functions and performance of infrastructure 
inspection assistance with a mobile device 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Data model for our Web GIS-based mobile 
inspection application 

 
 An inspection work is subdivided into several 
activities, such as geotagged image acquisition, adding a 
postscript to a photo, and adding a postscript to an 
engineering drawing. Geotagged data generated from 
these works are managed with Extensible Markup 
Language to automate file export using an inspection 
template prepared by municipalities and a combination 

of managed data, such as maps, images, and movies, 
using position data as a retrieval key in inspection 
navigation. Acquired GPS data are mainly used for the 
management of location and time data. The location data 
included represent the position of structures, camera 
position data, and camera azimuth and rotation data. 
 
2.2 Location data management 
 The required positioning accuracy is dynamically 
changed by each inspection work. For example, a closed 
photograph requires the same position (with 
approximately 1 cm accuracy) and direction (with 
approximately 1 degree accuracy) in the latest inspection 
to achieve automation of image registration for detection 
of any change in an infrastructure inspection (Nakagawa, 
Katuki, Isomatu and Kamada, 2013). On the other hand, 
inspection point detection requires lower positioning 
accuracy, from approximately 10 cm to 1 m. Moreover, 
in structure detection, positioning accuracy is allowed to 
be approximately 10 m. In addition, 100 m positioning 
accuracy is sufficient for an inspector’s arrival in an 
inspection area. Thus, a definition with several steps or 
spatial resolutions is effective in location data 
management. In this research, these steps are represented 
as levels of details (LODs), such as LOD1: address, 
LOD2: structure, LOD3: inspection point, and LOD4: 
photography, as shown in Table 2. 
 

Table. 2 LODs in infrastructure inspection  
 
 
 
 
 
 
 
 
 
 
 
3. EXPERIMENT 
 
 We conducted experiments involving the daily and 
annual Sabo infrastructure inspection work in a 
sediment-retarding basin consisting of dikes, bridges, 
and debris barriers in Fukushima, Japan (see Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Study area 
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 In attribute data acquisition, we record conditions of 
infrastructures, such as cracks, damages and 
displacements, based on checklists distributed by 
Japanese Ministry of Land, Infrastructure, Transport and 
Tourism (MLIT). We assigned these checklists to 
meta-data and main data, as shown in Figure 5. Then, we 
input text data and images to record the conditions of 
infrastructures with some mobile devices, as shown in 
Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Checklists in structure inspection based on 
MLIT’s guidelines 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Mobile devices (tablet PCs, smart phone) 
 
 In addition, omni-directional and close-range aerial 
images are also acquired to record attribute data of the 
conditions of infrastructures. These images are used to 
improve the integrity in infrastructure inspection with 
augmented reality applications in office works. 

 We used two types of cameras, such as THETA m15 
(RICOH) and QBiC PANORAMA (Elmo), to acquire the 
omni-directional images. These cameras were mounted 
on a monopod, as shown in Figure 7 and Figure 8. We 
also used a GPS logger (N-241, HOLUX) to get position 
data with omni-directional images. Acquired 
omni-directional images were stitched to be panoramic 
images and movies. These images and movies are 
viewed with a head-mount display (Oculus Rift), as 
shown in Figure 9. Moreover, we used a micro drone to 
acquire close-range aerial images with GPS/IMU data, as 
shown in Figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. RESULT 
 
 In our experiment, 213 images were acquired with 
mobile devices. Using geo-tag data, these images are 
reverse-geocoded into a map with GPS position data, as 
shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Geotagged images 
 
 Then, acquired images are grouped into 36 
viewpoints. In a manual work, it took 3120 sec. On the 
other hand, it took 4 sec in our position and azimuth 
filtering. Therefore, we confirmed that our application 
drastically shorten a work time for the image retrieval, as 
shown in Figure 12. 
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Fig. 12 Position and azimuth filtering result 
 
5. DISCUSSION 
 
 Positioning from LOD1 to LOD3 requires from 100 
to 1 m accuracy. Thus, single GPS positioning is suitable 
for position data acquisition. However, LOD4 requires 1 
cm accuracy with precise positioning, such as a real-time 
kinematic GPS (RTK-GPS). Generally, low-cost 
inspection restricts the use of expensive devices such as 
an RTK-GPS. In low-cost inspection, the performance of 
satellite positioning is generally improved by 
assisted-GPS, differential GPS and multi-GNSS 
positioning using GPS, GLONASS, and QZSS. Data 
fusion of GPS and dead reckoning also improves the 
performance of positioning. However, although these 
approaches improve availability, they have almost no 
effect on positioning accuracy improvement. In this 
research, satellite positioning was assumed to have 1m 
accuracy, even if we could apply improvement 
approaches to positioning accuracy. Thus, a location data 
management approach using movies was applied in 
LOD4 (precise positioning). This approach assists 
inspectors to determine a position in a photography using 
a movie that was captured in the latest inspection and the 
attached approximate position data acquired with GPS. 
 We qualitatively confirmed that automation of 
location and time data recording is more reliable than 
manual paper-based recording in infrastructure 
inspection. On the other hand, paper-based recording 
offers an advantage for documentation in an outdoor 
location, because text input with a mobile PC is 
time-consuming work. Moreover, we confirmed that 
raindrops worsen the performance of the touch interface, 
even when a waterproof tablet PC is used. 
 Position data acquisition depends on single GPS 
positioning. Although our study area consisted of 
open-sky environments and structures, GPS positioning 
was insufficient for positioning in LOD3 (inspected 
position detection) in an area surrounded by mountains 
or under a bridge. On the other hand, we have confirmed 
that geotagged movie was effective in estimating the 
LOD3 and LOD4 position data. Even if position data 
included a positioning error caused by low dilution of 
precision and multipath transmission, an inspection 
position could be detected using movie guidance. 
Moreover, we could also focus on geotagged 

omni-directional camera data to detect an inspected 
position. 
 In addition, we confirmed that inspection work using 
a tablet PC held with both hands was dangerous on bad 
roads, in riverbeds, and in craggy places. Therefore, we 
would propose to use hands-free applications using 
wearable devices and voice-guided applications with 
geofencing techniques to improve safety in inspections 
using a mobile device. 
 
CONCLUSION 
 
 In this paper, we focused on ground investigation and 
inspection using mobile devices. We aimed to assist 
investigators in infrastructure asset monitoring with 
location-based applications. We proposed and evaluated 
our location-based investigation application for facility 
management based on CIM. Through our experiment, we 
explored several issues in infrastructure asset monitoring 
using mobile devices. Integrity in positioning should be 
improved to achieve more reliable and effective 
inspection works. Therefore, we proposed an LOD 
definition for positioning data management in inspection 
works. Moreover, we proposed combinations of base 
maps and several types of data acquired with a mobile 
device in inspection works to improve reliability, 
completeness, and integrity in positioning. 
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