

低コスト・高効率を目指した EV用モータの開発

芝浦工業大学 電気工学科 教授 下村昭二

EVの世界販売台数

自動車の世界販売台数の推計

- ・2019年のEV世界販売台数は210万台超
- ・2019年の世界自動車販売台数の2.6%

https://www.iea.org/fuels-and-technologies/electric-vehicles

IPMSM: Interior PM Synchronous Motor

Referred EVALUATION OF THE 2010 TOYOTA PRIUS HYBRID SYNERGY DRIVE SYSTEM

by Oak Ridge National Laboratory Shibaura Institute of Technology Electromagnetic Actuator Lab.

TVモータの効率マップ

ম	ヹ゚゚゚゚゚゚゚゚ゝ゚゙゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚
	23.3 [Nm]

電流 [Arms]	9.73
積厚 [mm]	90
ステータ外径 [mm]	184
ギャップ長 [mm]	0.7
スロット数	12
極数	8
ロータ 直径 [mm]	120
磁石厚 [mm]	6
磁石幅 [mm]	27
巻数 [回]	24
鉄心材料	35H230
磁石材料	NMX-S49F

PMVM (PMバーニアモータ)

電流 [Arms]	9.73
積厚 [mm]	90
ステータ外径 [mm]	184
ギャップ長 [mm]	0.7
スロット数	12
極数	8
ロータ直径 [mm]	120
磁石厚 [mm]	6
磁石幅 [mm]	27
卷数 [回]	24
鉄心材料	35H230
磁石材料	NMX-S49F

5

IPMSM & PMVM

6

Dual Rotor – Axial Flux Permanent Magnet Vernier Machine

>モータ仕様

コイルエンドを含めた体格が比較対象モデルと同等となるように設計 回転子極数は磁気ギア比が小さい極スロット構成(6slots - 4poles)

- ・磁石材料:異方性ネオジムボンド磁石 → MAGFINE RNI-5610V
- ・鉄心材料: 圧粉磁心(SMC) → Somaloy 700 3P

DR-AFPMVM Compared motor モータ体格の比較

Shibaura Institute of Technology Electromagnetic Actuator Lab. ※FEM解析の温度条件:140℃一定

8

効率特性の比較(FEM解析)

Electromagnetic Actuator Lab.

試作1号機

試作1号機

<構成>

実験回路 Х

12

	衣 美颖岙具	
name	maker	Model number
1号機(DR-AFPMVM)	下村研究室	
負荷モータ	富士電機	GYS302D5-RB2
インバータ	Myway	MWINV-9R122A
制御ボード	Myway	PE-Expert pev
トルクメータ	UNIPULSE	B5C00569
パワーメータ	横河電機	WT1030
オシロスコープ	Tektronix	DPO2014B C010517

Shibaura Institute of Technology Electromagnetic Actuator Lab.

义

1 号機 実験結果

<電流-トルク特性>

測定条件・・・回転数 3000rpm

Current (Arms)	Torque (Nm)
1.0	0.40
3.0	1.19
5.0	2.00
10.0	4.08
15.0	6.08

実験結果 号機

SIT SHIBAURA INSTITUTE OF TECHNOLOGY

連続定格時の比較

<1号機との体格比較>

1号機	2号機			
出ナ	比			
1.0	4.0			
体積比				
1.0	3.5			

180		モデル	628W機	2.5kW
		モータ外径[mm]	114	180
	14.55	軸長[mm]	64.1	64.3
		固定子歯内径[mm]	47	86
34 70.1		ロータバックヨーク[mm]	5.2	
		磁石厚[mm]	()
		エアギャップ長[mm]	0.5	
(a)外観図	プレート幅[mm]	2	2 ~ 5	
		電流密度[Arms/mm ²]	5	3.5
		turn数 (turn/相)	180	105
		占有率	0.5	
		磁石材料	ネオジムボンド磁石 MAGFINE RNI-5610V (120℃)	
		鉄心材料	Somaloy 700 3P	HB1_rev1_150deg
		プレート材料	ステンレス鋼 SUS304	
180	180	Z_{I}	6	9
(b) 回転子 (c)固定子	Z_2	4	6
各部の寸法		Z_2/p		2

2号機シミュレーション結果(1号機との比較)

<トルク特性>

トルク特性

	1号機 628W	2号機 2.5kW
定格回転数 [rpm]	3000	
平均トルク [Nm]	2.0	8.0
実定格出力 [W]	628	2513
トルク脈動率[%]	18.9 29.8	
トルク密度 [Nm/m ³]	3.97	4.49
トルク密度比率 [%]	100	113

17

■2号機シミュレーション結果(1号機との比較)

18

< 効率特性>

1号機

製作中の2号機

ステータ		ロータ
ステータスロット数 電機子極数	電機子とロータの極数が異なる	ロータ 極数
9スロット8極	バーニアモータの特異な点	10

<まとめ>

低コスト・高効率を目指したEV用モータとしてデュアルロータ・ア キシャルフラックス形PMバーニアモータを紹介した。その特長は次 の通り。

- ✓ 比較的安価なジスプロシウムレスネオジムボンド磁石を採用
- ✓ ネオジム焼結磁石に比較して保磁力が劣るネオジムボンド磁石の 欠点を補うために、大トルク特性を有するバーニア構造を採用
- ✓ さらに、トルク向上のためエアギャップ面積が広く取れるデュア ルロータ・アキシャルフラックス構造を採用

<今後の課題>

- ✓ 2号機の評価と分析
- ✓ 設計手法の確立
- ✓ 実用出力機による実験検証

