防食皮膜を指向した完全フッ素化導電性 高分子の合成法および成膜法の開発

芝浦工業大学工学部応用化学科 田嶋稔樹

© TemplatesWise.con

導電性高分子の防食機能

ペルフルオロ化合物

テフロンの構造

完全フッ素化導電性高分子

ペルフルオロポリフェニレンの合成

M. Hellmann, A. J. Bilbo, W. J. Pummer, J. Am. Chem. Soc., 1955, 77, 3650-3651.

S. B. Heidenhain, Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, T. Mori, S. Tokito, Y. Taga, *J. Am. Chem. Soc.*, **2000**, *122*, 10240–10241.

◆ ヘキサフルオロベンゼンの電解還元重合

◆ フローセルを用いるオリゴマーの電解合成

電極触媒作用

(a) 電極触媒が作用しない電極

(b) 電極触媒が作用する電極

種々の電極を用いたヘキサフルオロベンゼンのLSV

Potential /V vs Ag|Ag⁺

電解溶液 : 0.1 M Bu₄NBF₄/HMPA 基質 : 0.1 M HFB 作用極 : AI, Ti, Fe, Ni, Cu, Zn, Pd, Ag, Pt, Au (*φ* = 1 mm) 対極 : Pt wire 参照電極 : Ag|Ag⁺ 掃引速度 : 100 mV s⁻¹

ヘキサフルオロベンゼンの電位掃引重合

ヘキサフルオロベンゼンの電位掃引重合

ヘキサフルオロベンゼンの定電位重合

電解後

乾燥後

洗浄·乾燥後

剥離後

合成した薄膜の原子組成

C : 60at% F : 40at%

重合膜の原子組成百分率

	Elemental concentration	
	(at	%)
Cathode	С	F
Pt	61	39

ペルフルオロポリフェニレン膜の接触角

PFPP修飾電極:約74°

Pt電極:約53°

ペルフルオロポリフェニレン膜の発光特性

フローセルを用いる ペルフルオロオリゴフェニレンの電解合成

反応溶液の質量分析

反応条件: 20 mM HFB, 0.1 M Bu₄NPF₆, 1 F mol⁻¹, 140 mL h⁻¹, 25 mA cm⁻²

田嶋稔樹, 伊藤亘, 特開2020-183517.

フローセルを用いることで、ペルフルオロオリゴフェニレンの電解合成が実現可能