(Form6)

論 文 要 旨

Thesis Abstract

Thesis Abstract	
	(yyyy/mm/dd) 2021 年 2 月 15 日
※報告番号	甲第 284 号 <mark>氏 名</mark> (Name) Hanan Mubarak A. Alhussain
主論文題名	(Title)
Morphology-Controlled Synthesis of Nitrides from Titanium Dioxide and Titanium Disilicide by Ammonia Nitridation	
内容の要旨 (Abstract)	
The objective of this thesis is to investigate the methods of preparing TiN, one of the	
essential refractory materials and industrially used, to obtain the product with less	
agglomerated and defined shape particles. Additionally, the optimum conditions for	
preparing the TiN-Si ₃ N ₄ composite powders were also investigated in an atmosphere of	
NH3.	
This thesis consists of five chapters.	
Chapter 1 is the general introduction, which contains;	
• Info	ormation about the nitride materials, their structure, properties, applications,
and their famous preparation methods.	
• Inte	egrated information about TiN and Si ₃ N ₄ that explain the characteristics of
thes	se materials and their industrial importance in various fields.
• Ger	neral information about PTFE and TiSi ₂ .
In Chapter 2, the effect of the exposure time of the nanocrystalline TiO_2 to NH_3 gas during the	
nitridation process on the degree of agglomeration of the resulting nanocrystalline TiN was	
investigated	. Nanocrystalline TiN was prepared via direct ammonia nitridation of

nanocrystalline TiO₂ powder at 900 and 1,000 $^\circ$ C. The weight changes caused by this nitridation

were monitored by TG. The TG results showed two-step weight losses. Based on the XRD and XPS results, the first and second weight losses were from 750 to 950 °C and beyond 950 °C, respectively. These corresponded to the transformations from TiO₂ to TiO and/or TiO_xN_y to TiN, respectively. During heating in NH₃, oxygen was eliminated, which inhibited sintering of the TiO₂ particles. This sintering inhibition resulted in the formation of less agglomerated nano-sized TiN particles from nano-sized TiO₂.

In Chapter 3, a simple preparation method for simultaneously synthesized TiN–Si₃N₄ mixed materials was obtained by the direct nitridation of TiSi₂ under an NH₃ gas flow. Using this nitridation, a mixture of TiN particles and Si₃N₄ fibers were obtained, and, we achieved a 50.9% weight gain at 1,300 °C for 10 h. The nitridation was almost completed, but other reactions, such as oxidation owing to the presence of SiO₂ have occurred. The amount of SiO₂ decreased alongside an increase in holding time. This high reaction ratio was presumed to have been the result of the presence of hydrogen, formed by the thermal dissociation of NH₃.

In Chapter 4, the synthesis method of TiN nanoparticles by the direct nitridation process of TiSi₂ under an NH₃ gas flow with the addition of PTFE vapor was investigated. The experimental results showed that the Si formed on the TiSi₂ reacts with C_2F_2 (g), which is formed from PTFE decomposition, and form SiF₄ (g), and the Ti in TiSi₂ is reacted with C_2F_2 (g) to form a volatile TiF₄, which react with NH₃ to form nanocrystalline TiN.

Chapter 5 is a summary of this thesis.

%official use only