(Form6)

日

論 文 要 旨

Thesis Abstract

(yyyy/mm/dd) 2018 年 03 月 16

※報告番号	甲 第 217 号	氏名 (Name)	Arini Nuran Binti Zulkifili
-------	-----------	--------------	-----------------------------

主論文題名 (Title)

Alkali Metal Bismuthate and Bismuth Vanadate Microstructure for Visible Light Driven Photocatalytic Activity

内容の要旨 (Abstract)

The photocatalyst such as titanium dioxide (TiO₂), is known for its effectiveness in treating waste from industrial pollutions such as dyes, pesticides and other emerging contaminants. In decades, TiO₂ has attracted attention from worldwide researchers because it is cheap, abundant and stable. However, TiO₂ is not ideal and performs poorly in processes associated with solar photocatalysis due to its large band gap (3 to 3.2eV) that results in utilizing not more than 5% of the total solar energy (λ < 387nm). Therefore, in this research, we are trying to find alternative materials that can endeavor better results or at least, identical to TiO₂ in the degradation of organic dye under visible light irradiation (λ < 387nm) by approaching the simple and low cost synthesize method.

In order to find alternatives materials, we will be focusing on the bismuth-based semiconductor that has a potential for visible light responsive photocatalysts. This is because it has an electronic structure which its valence band consists of hybrid orbitals of O 2p and Bi 6s. The Bi 6s orbitals results in increasing the mobility of its photo-generated charge carriers, besides decreasing the band gaps to less than 3.0 eV. Due to its potential, varieties of bismuth-based semiconductor with various morphologies have been studied for its photocatalytic activity such as NaBiO₃, KBiO₃, LiBiO₂, Bi₁₁VO₁₉ and BiVO₄. In this study, we have divided the study into two main parts, which are the alkali bismuthate materials such as NaBiO₃, KBiO₃ and LiBiO₂ that are efficient in the decolorization of the dyes and the bismuth vanadate such as Bi₁₁VO₁₉ and BiVO₄ that can mineralize the dye effectively.

Accordingly, in this study, we have successfully understood the degradation of dyes by NaBiO₃ in various pH conditions that provide in a better understanding in developing new photocatalytic materials. Besides, we have successfully synthesized the alkali metal bismuthate of potassium and lithium by a simple solid state reaction, using NaBiO₃ as the starting materials. Furthermore, we have achieved various morphologies and microstructures such as Bi₁₁VO₁₉ and BiVO₄ just by using a simple precipitation method in the synthetization process.