
A STUDY OF A NATIVE DOCKER CLUSTERING SYSTEM
ON A POWER-CONSTRAINED ENVIRONMENT 

Chanwit Kaewkasi, Wichai Srisuruk, Bhuridech Sudsee, Pathawee Ngoenthai
School of Computer Engineering, Suranaree University of Technology

chanwit@sut.ac.th, wichai@sut.ac.th,  m5741861@sut.ac.th,  m5741847@sut.ac.th

ABSTRACT A data  center  is  a  vital  component  for
business.   A corporate  usually  prefers  a  private  data
center to secure its data, but it is costly to operate its own
data  center.  The  expenditure  covers  constructing  the
building, purchasing server machines and devices as well
as the operating, electricity and system cooling cost. This
raises the importance of applying low-powered CPUs to
build a computing cloud.

A  cloud  platform  usually  employs  virtualization
technologies  to  utilize  its  resource  sharing.  Among
widely  used  hypervisor-based  virtualizations,  there  is
another  efficient  technique,  the  OS-level  virtualization.
This paper focuses on a clustering technology based on
Docker Swarm, hereinafter referred as  Swarm.  It  is the
native  clustering  solution  developed by Docker  inc.  in
collaboration with our laboratory and other contributors.

This  paper  describes  the  work  and  experimental
results  of  studying  Swarm in  the  context  of  a  power-
constrained  environment.  One  of  the  finding  is  that
Swarm scales  linearly even  on  a  50-node  cluster.  The
experimental  results  showed  that  Docker  Swarm  can
form a cluster effectively. It  is also showed that Swarm
scales linearly even on a 50-node 32-bit ARMv7 cluster.
The  study  also  found  that  our  32-bit  cluster  hits  the
limitation  of  running  containers  at  maximum  93
containers per node.

1. INTRODUCTION 
A  data  center  is  a  vital  component  for  business.

Beside  server  machines,  it  consists  of  other  supporting
systems, such as the redundant power supply, the cooling
system as well as the security systems (Bullock, 2009). A
corporate usually prefers a private data center to secure
its data, but it is costly to operate its own data center. The
expenditure covers constructing the building, purchasing
server machines and devices as well as the operating cost.
This  leads  to  an  expectation  that  the  number  of  data
centers  will  be  increasing until  2017,  then  decreasing
afterwards (Villars & Shirer, 2014) (Smolaks, 2014). One

of the main reasons is the economy burden of operating a
data center.  Its operation and maintenance cost is fixed
despite no one in the corporate uses it.

Cloud computing is  a  solution  to  solve the  cost  of
building a corporate-owned data center.  A cloud platform
usually employs virtualization technologies to utilize its
resource sharing (Marinescu, 2013). Among widely used
hypervisor-based virtualizations, there is another efficient
technique,  the  OS-level  virtualization,  to  manage  the
cloud's resources. Docker is an implementation of such
technique,  which  is  called  containerization  instead  of
virtualization. As this technique shares the same kernel of
the  host  machine,  Docker  can  start  a  new  container
without spending time to boot the machine layer (Felter
et  al.,  2014).  To form and manage a cluster  of Docker
instances, it can be done using Docker Swarm (Vieux et
al.,  2014),  hereinafter referred as  Swarm.  Swarm is the
native clustering solution developed by the same Docker
developer team with helps of individual contributors. As
reported by Kaewkasi (2015), Swarm is also able form a
cross-platform hybrid cluster,  which utilizes both ARM
and  x86  hardware  underneath  but  serve  as  a  single
manageable Docker instance. Previous works reported by
Kaewkasi & Srisuruk (2014a) and Kaewkasi & Srisuruk
(2014b)  encountered  difficulties  to  manage  software
stacks  on  ARM-based  clusters  as  the  constrained
environment  is  not  suitable  for  hypervisors.  These
previous  works  motivated  us  to  study a  Docker-based
virtualization  cluster,  Swarm,  in  terms  of  processing
overhead and scalability on an ARM-based cluster.

This paper describes the work and the experimental
results on a study of Swarm in the context of a power-
constrained  environment.  Experiments  have  been
conducted to find out answers for the following research
questions. Firstly, how large is the overhead of a single-
node Swarm over Docker  compared to  a  plain Docker
instance in the low-power environment? Secondly, how
does a Swarm cluster behave in term of scalability when
deploying short-lived containers to it? Finally, what is the



behavior and limitation of an ARM-based Swarm cluster
under steady loads? One of the main contributions of this
paper is the finding that Swarm scales linearly even on a
50-node cluster.

The remainings of this paper are organized as follows.
Section  2  discusses  related  works.  Section  3  reviews
Swarm, the native clustering system for Docker. Section
4  discusses  the  technical  configuration  of  the  system
prepared  for  the  experiments.  Section  5  discusses  the
experiments  and  their  results.  This  paper  ends  with
Section 6 for discussion, conclusion and future works.

2. RELATED WORKS
As  Swarm  is  still  being  developed,  there  is  no

scientific  study  on  a  Swarm  cluster  yet.  This  section
reviews  works  related  to  Docker-based  clusters  in
general.

Liu  and  Zhao (2014)  were  trying to  create a  cloud
computing  system using  two high-end  machines.  They
created  6  containers  on  each  of  them.  Each  container
open  ports  ranging  from  49153-65535  to  allow  data
communication  with  the  host.  They  have  found  that
containers  performed  faster  than  virtual  machines  with
the same applications and settings. Our work goes further
by studying Swarm to form a Docker cluster.

Williams (2015) designed a cluster architecture using
heterogeneous hardware.  The author used an ARM and
another  x86 machine to  form a  Swarm cluster.  But  he
employed  Powerstrip  (Marsden,  2015),  an  API
prototyping  tool  for  Docker,  to  intercept  calls  from
Swarm,  so  the  architecture  is  incurred  from  extra
overheads generated by Powerstrip.

Falck (2014) developed an ARM cluster with 4 boards
of Raspberry Pi and installed Docker on them. The author
used SaltStack to manage the cluster. However there was
no  study  of  the  performance  of  SaltStack.  The  work
described in this paper used Swarm to form the cluster
and studied its characteristics.

Recently,  Kaewkasi  (2015)  has  created  a  Cross-
platform Hybrid  Cloud using  Swarm and  Docker.  The
cluster was formed atop a 50-node Aiyara cluster (ARM)
and another 50 DigitalOcean nodes. Swarm was tweaked
to make it able to place a certain container image to a
right  platform.  In  his  work,  there  was  no performance
measurement  of  the  cluster  yet.  Differ  from Kaewkasi
(2015), the work described here in this paper measured
Swarm characteristics and used the same ARM hardware
but excluded the DigitalOcean nodes.

Google  has  also  developed  Kubernetes  (Bernstein,
2014) to support clustering Docker instances. However,
there  is  no  performance study of  Kubernetes  available
yet.

3. DOCKER SWARM
Swarm  (Vieux  et  al.,  2014)  is  a  clustering  system

natively built for Docker. It has been developed using an
open process, which allows one of the authors to join the
development of the project since the beginning. To make
this  paper  self-contained,  the  structure  of  Swarm  is
described here in this section.  A Docker instance running

on a Node is called an Engine. In this paper, we use the
terms  Docker  Engine and  Docker  instance
interchangeably.

There is an assumption that each machine (Node) will
start only one Engine. There is a SwarmAgent running via
the  swarm  join command  on  each  Node.  A
SwarmAgent is responsible for advertising the address of
the Engine on its  Node by registering the address to a
Discovery service.  A Discovery  service  is  a  store  that
keeps a list of healthy Engines. The SwarmManager will
retrieve the list of Engines to form the cluster as a virtual
Docker host. Any DockerClient can just interact with this
virtual host as it is another Docker Engine.

SwarmManager is responsible for selecting a certain
Engine to place a newly created container.  During this
process, it applies a set of Filters to available Engines so
that  an  Engine  is  chosen  for  conditions  specifying  as
Constraint or Affinity expressions.

Figure 1. A block diagram of cluster configuration

4.  CLUSTER CONFIGURATIONS
Cluster configurations based on Swarm are discussed

in  this  section.  Figure  1.  shows  the  block  diagram
illustrating Swarm acting as a single virtual endpoint for
50 instances of Docker running on the physical cluster.
Each  Docker  instance  is  registered  to  the  central
Discovery Service, from where Swarm retrieves the list of
Docker nodes. A Docker client then will be able to talk to
Swarm because it  now serves the similar interface as a
normal Docker host. Figure 2. Block diagram illustrating
the 50-node physical cluster proxied by Swarm.

The Docker client runs on a 3.2 GHz x86 64-bit Linux
machine  with  4GB  RAM.  We  installed  the  official
Docker engine version 1.6 on it. On this 50-node ARM
cluster,  we use  the  Aiyara  cluster  model  (Kaewkasi  &
Srisuruk,  2014a),  which  is  built  atop  a  set  of  ARM
Cortex-A7  dual-core  1  GHz  processors.  The  Docker
engine  running  on  the  ARM cluster  is  a  custom build
based on Docker 1.6.

int main() {
    struct timespec time1;
    time1.tv_nsec = 500000000L;
    return nanosleep(&time1, null);
}

Figure 2. Cluster payload with nanosleep for 500 ms.



FROM       nikitav/busybox-arm
ENV        LD_LIBRARY_PATH /lib
COPY       nanosleep /
ENTRYPOINT /nanosleep

Figure 3. Cluster payload nanosleep for 500 ms.

In the experiments, a payload for the ARM cluster has
been prepared as a program that sleep for exactly 500 ms
using the system call nanosleep as described in Figure 2.
After  preparing  the  nanosleep executable,  a  Docker
image containing the executable was prepared using the
following Dockerfile. The Docker image is built and
named  aiyara/nanosleep500ms,  as  described  in
Figure 3.

5.  EXPERIMENTS
This  section  describes  three  experiments  in

corresponding to three research questions. The questions
are  restated  as  the  following.  RQ1:  how  large  is  the
overhead of a single-node Swarm over Docker compared
to  a  plain  Docker  instance  in  the  low-power
environment? RQ2: how does a Swarm cluster behave in
term of scalability when deploying short-lived containers
to  it?  RQ3:  what  is  the  behavior  and  limitation  of  an
ARM-based Swarm cluster under steady loads?

5.1 Overhead on a single node
The first experiment was conducted to answer  RQ1:

how large is the overhead of a single-node Swarm over
Docker compared to a plain Docker instance in the low-
power environment?

To measure a plain Docker, the experiment started by
installing  the  Docker  engine  on  an  ARM board.  Then
started a payload container, aiyara/nanosleep. The
container runtime is measure using the time command:

$ time `docker run aiyara/nanosleep`

 The container  was deleted  by a separate  command,
docker rm, after finish. The experiment was repeated
20 times.

To measure  a  single-node Swarm, a Docker engine
was provisioned using Docker Machine with our Aiyara
driver. Docker is setup this way because it is a method
suggested by the Docker orchestration workflow. Swarm
retrieves the node address via an instance of ZooKeeper,
a  discovery  service.  The  ZooKeeper  discovery  service
was chosen because it is a development done by our team
for the Docker Swarm project.

The ZooKeeper instance served at  TCP port  2181.  
The Swarm manager was started on the x86 machine.

Then the Docker client connected to the Docker Engines
via Swarm, rather than directly connected to each Engine.
The same payload container was started through Swarm.
This step was repeated 20 times.

Figure 4 shows the result from the experiment 1. The
result  showed  that  controlling  containers  via  Swarm
averagely  took  2,507  milliseconds  with  insignificant
standard derivative.  In  the case of controlling the plain

Docker  without  Swarm,  it  averagely  took  1,333
milliseconds. It  is obvious that  the overhead caused by
Swarm is around 1.88 times of the using plain Docker as
Swarm  introduced  another  layer  of  processing  via  the
network.

Figure 4. The experimental result of a single-node Swarm
compared to a Docker instance.

5.2 Overhead when running short-live containers 
overhead on a single node

The  second  experiment  was  conducted  to  answer
RQ2:  how  does  a  Swarm  cluster  behave  in  term  of
scalability when deploying short-lived containers to it? A
short-live container means the container will be run for a
short  period  of  time,  in  this  case  500ms.  Then  the
container  will  be  left  there  inside  Docker  with  the
Exited state.  There  are  5  rounds  in  this  experiment,
number of nodes were scaled gradually from 10 to 50. On
each round, 625 containers were created and run spreadly
across  Docker  Engines.  We  chose  this  number  of
containers  to  make  the  cluster  imbalance  during  the
experiments. Tests were repeated 5 times. 

Figure  5.  Time  distribution  used  by  running  short-live
containers in the experiment 2.

The results from this experiment are shown in Figure
5  and  6.  In  Figure  5,  it  presents  the  distribution  of
running time for each container in dots. It is clearly that
running  times  went  high  at  the  beginning  of  the
experiment  because  the  joining  process  by  each
SwarmAgent.  According  to  Figure  6,  if  the  number  of
containers per node increases Swarm will take more time
managing  them.  Also,  if  the  number  of  nodes  in  the



cluster  increases  while  the  number  of  containers  is  a
constant, the running time and overhead of Swarm will
decrease. Table 1. shows number of containers per node
and the average runtime of each container.

Figure 6. Average time of running short-live containers in
the experiment 2.

Table 1. The result of the experiment 2 showing average
number of containers per node and the average run time

of each container.

# Nodes # Containers per node Average run time per

container

(millisecond)

10 62.50 2,630.31

20 31.25 2,520.64

30 20.84 2,490.76

40 15.63 2,481.49

50 12.50 2,475.13

5.3 Scalability under steady loads
The third experiment was to answer the third research

question  RQ3: what is the behavior and limitation of an
ARM-based Swarm cluster under steady loads?

The setup for this experiment was similar to that of
the experiment  2,  but  changed from running short-live
containers  to  long-live  containers  and  focused  on  the
maximum number of containers on each node. Instead of
measuring  runtime,  we  measured  starting  time  in  this
experiment.

The payload used in each long-live container is  the
sh command  running  in  background.  This  means  that
each  container  would  be  in  the  memory  forever  until
manually removed. The experiment started by forming a
10-node cluster, each of them gradually started containers
until its number reached 90. The main reason the number
of containers per node is capped to this number because
the  hardware  of  a  node  is  32-bit.  If  the  number  of
containers goes beyond 93, a node will fail because the
default stack allocation of  pthread is at 13 MB and it
makes the system ran out of memory.

The result of this experiment is shown in Table 2 and
illustrated in Figure 7. From the result, it  is found that
adding nodes to the cluster significantly reduced stress of
the cluster  when starting new containers.  Spikes  at  the

beginning  of  the  graph,  the  red  wall,  caused  by  each
SwarmAgent joining the cluster. There was some spikes
during the testing of the 30-node configuration too. It was
caused by a networking problem during the experiment.

Figure 7. The graph illustrating the scalability of nodes
on a Swarm cluster at 90 containers per node.

Table 2. The summary of the container starting time at 90
containers per node in average.

# Nodes Average starting time of the a container (milliseconds)

10 1,483.72

20 1,421.35

30 1,442.19

40 1,388.92 

50 1,397.41

6.  CONCLUSION AND FUTURE WORK 
This paper presented a work of studying a clustering

system  for  an  implementation  of  the  OS-level
virtualization,  Docker,  on  a  low-power  cluster.  Three
experiments have been conducted to find overheads and
scaling  characteristics  of  Swarm  on  a  50-node  cluster.
The results showed that Swarm scales linearly even in a
constrained  environment,  an  ARM-based  cluster.  The
overhead, 1.17 second, of a single-node Swarm is 1.88
times compared to plain Docker on an ARM node. This
overhead  came from network  connection  and  the  node
selection mechanisms inside Swarm.

Running  short-live  containers  also  affected  the
performance of the Swarm cluster. Swarm took 2.47 and
2.63 seconds when the average number of containers per
node is 12.5 and 62.5 respectively.

Starting long-live containers put stress on the cluster,
but increasing number of nodes significantly reduced the
stress. From these three experiments, it can be concluded
that Swarm scales linearly even on the power-constrained
50-node cluster. It is really interesting to investigate that
how large  the  size  of  a  cluster  Swarm could  properly
handle, both in its standalone Swarm mode and the mode
that uses the scheduler of Mesos (Hindman et al., 2011).

There  are  several  open  questions  motivated  by the
work  reported  in  this  paper.  The maximum number  of
containers under a 32-bit ARM board is around 93. To
make  a  32-bit  board  be  able  to  use  as  a  better



experimental  platform,  the  default  stack  size  of
pthread used by Docker would be tweakable.  When
forming  a  cross-platform  hybrid  cloud,  the  power
consumption  characteristic  of  the  cluster  is  also
interesting  to  study.  Moreover,  there  is  high  latency
around  the  time  of  deploying  first  containers  on  each
node.  This  is  also  an  interesting  issue  for  further
investigation.
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