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ABSTRACT This research has been conducted on an 
Adept Mobile Robots Pioneer LX under the framework 
of research for assistive systems for blind people. 
Traditionally blind people used to employ long cane or 
guided dog to take part in mobility activities. The 
Mobile Robots Pioneer is designed for carrying up-to-60 
kg weight and working in indoor environment, which is 
appropriate for a wheelchair accessible. The Kinect 3D 
sensor has the ability to detect and calculated relatively 
accurate the distance to the obstacle, therefore it can 
help the robot to avoid the obstacle and implement 
navigation more easily. In this paper, a Kinect depth 
based real time stationary obstacle detection algorithm 
was presented. Besides, a scenario of completing a 
trajectory along a long corridor using a combination of 
Mobile Robot Pioneer LX and Kinect Sensor was 
conducted. 
 
1. INTRODUCTION 
 According to the World Health Organization in 
2014, there are around 286 million visually-impaired 
people including 69 million blind people (WHO, 2014). 
Vision loss results in independence loss, especially 
limited mobility. Lack of mobility is a serious hindrance 
for the individual. Blind people find difficulties to move 
independently, as they cannot specify in advance the 
traveling direction and object location along their path 
and in the surrounding environment. 
 The traditional aided mobility devices for most of the 
blind people are the white cane and the guide dog. These 
mobility choices support blind people to move through 
known and unknown environment independently. The 
white cane involves a simple cane and can detect 
stationary obstacles through tactile feedback 
(Armstrong, 1975). The guide dog can distinguish 
complex situations such as cross walks, staircase and so 
on. The resulted information is received via tactile 
feedback. Another option is to use their audition to 
compensate the vision loss. Recently blind people have 
strongly used the sound in order to travel and maintain 
their safety. Besides, the information from the 
surrounding permits the blind people to recognize 
through the sources and sounds from the surrounding, 
such as traffic lights, traffic, noises from coming from 
the machinery, animals or people, etc.  

  
Wheelchair is one of the novel Electronic Travel Aid 
System (ETA) which is not only used for blind people 
but for handicapped people in general. The ETA systems 
are based on three interfaces: the input interface, the 
processing interface and the output interface. The input 
interfaces collect the environmental data and are 
classified in: ultrasound, laser, and artificial vision and 
GPS system. The processing interface is composed of 
the techniques and the software for processing all the 
acquired information and for transforming it into 
required data for the output interface. The output system 
represents the model for transmitting the information 
from the device to the user. It should be as much concise 
and clear as possible, in order not to confuse and disturb 
the user.  
 Our proposed system utilizes the Kinect sensor as 
the input interface and processes the environmental 
information by the computer inside the mobile robot or 
an integrated laptop. After processing the depth 
information from the Kinect, the distance and the 
direction of the obstacles are extracted. Then command 
will be determined to avoid obstacle and the instruction 
will be transferred to the robot automatically. 
 
2. RELATED WORK  
 An autonomous and intelligent mobile robotic 
assistant system is proposed in this paper to make it 
possible for the disabled to live independently, safely 
and comfortably rather than move to a costly healthcare 
facility. The system works in a coordinated and efficient 
manner to carry out the tasks. The intelligent mobile 
robots navigate autonomously through the home 
environment and transmit the data through wireless 
network to the remote control center.  
 A robot manipulator is developed to assist workers 
with disabilities (Hun et al., 2005). This robot 
manipulator is designed to carry out the task as PCB 
circuit testing and inspection of soldering. An 
electromyographic (EMG) based semiautonomous 
human – robot interaction system is presented (Rani et 
al., 2005). It allows the disabilities can send high-level 
commands to robot for some daily living activities. A 
guide dog robot and a stereotyped motion following a 
person are developed. The guide dog robot consists of a 
mission planner, digital map, interactive navigator, 



vision system and undercarriage system (Mori and Sano, 
1991).  
 A whole-field target tracking and following mobile 
robot system is developed based on a pan/tilt/zoom 
CCD vision system. The vision system scans and locks 
the pose of the moving target and commands the 
tracking mobile robot to follow the target while 
avoiding obstacles (Lee et al.,2013). This paper 
proposed a novel appearance design and fabrication on 
an existing mobile robot to assist blind people to 
achieve independent living and communicate through 
established social networking. The mobile robot control 
system is presented in two other separate papers as the 
intelligent control system and visual servo control 
system (Lee and Chiu, 2013).  
 In this paper, the designed system is a guide robot 
connected to a depth camera Kinect which later can be 
developed as a wheelchair. This human machine 
interface allows a convenient operation. The resulting 
automatic navigation provides the optimal and collision-
free path. It significantly reduces the risk for blind users 
in unfamiliar environment. 
 
3. OVERVIEW OF THE SYSTEM  
 The obstacle detection module takes scene 
information from a mobile Kinect.  In our prototype, the 
obstacle detection is running on a laptop mounted on a 
backpack of the visually impaired people and mobile 
Kinect is the Kinect with battery so that it can be 
mounted easily on the human body for collecting data 
and transferring data to the laptop. The scene 
information, in our case, is the color image, depth 
image, and accelerometer information provided by 
Kinect.  
 Concerning the actuator, the pioneer Mobile Lx was 
used to perform the mobility based on the information 
that the Kinect processed. In our work, we consider 
indoor environment where obstacles are defined as 
objects in front, obstructing or endangering while blind 
people are moving. Specifically, we focus on detecting 
static objects (e.x. trash, plant pots, fire extinguisher). In 
the following, we will describe in detail the obstacle 
detection. 
 
3. MICROSOFT KINECT 

After introducing the Kinect sensor for Microsoft’s 
Xbox 360 in November 2010 and a version for 

Windows on February 1, 2012 many computer scientists 
have used the Kinect as a robotic sensor. It is low cost 
sensor that includes both an RGB channel and a 3D 
depth channel, which can provide more information of 
the scene, work well in a low light environment and 
they are efficient for real-time processing.  

RGB-D camera captures both RGB images and 
depth maps at a resolution of 640× 480 pixels with 30 
frames per second. The effective depth range of the 
Kinect RGB-D camera is from 0.4 to 3.5 m. The Kinect 
color stream supports a speed of 30 frames per second 
(FPS) at a resolution of 640 x 480 pixels. The main 
purpose of using Microsoft Kinect sensor is to 
reconstruct 3D scene in front of the user from Color-
Depth that represents a crucial data which is necessary 
information for visually impaired people. The system 
proposed using a laptop for processing color-depth 
images to extract accurate information about the 

obstacles. 
Fig 1. The structure of Microsoft Kinect Sensor 

  
4. OBSTACLE DETECTION  

The depth information was processed using the Point 
Cloud Library (PCL). The PCL support the OpenNI and 
Kinect SDK interface. In addition to PCL, some 
libraries can be also used such as OpenCV, Boost, Eigen 
and so on. To detect obstacles, first we use data from 
Kinect (color image, depth image and accelerometer 
data) to build point cloud. Then we detect ground plane 
and walls plane in the image by using plane 
segmentation in point cloud proposed by Holz et al., 
2012. After that, we detect all obstacles in the scene 
including static obstacle and human and check for the 
nearest obstacle to make the instruction for the robot. 
This whole process can be seen in the Fig. 2. 
4.1. Reconstruction 
This step contains reconstruction, filtering and rotating 
point cloud: 



– Reconstruction: In this stage, depth and color image 
will be combined to make a 3D Point Cloud using Point 
Cloud Library (PCL).Kinect is a low-cost RGB-D 
camera that can provide various types of data including 
color image, depth image, accelerometer data, skeleton 
information, sound from microarrays. However, the 
color and depth image were captured by two different 
sensors hence they are not aligned. That means given a 
pixel in the color image, we cannot get correspondent 
pixel in depth image directly as well as 3D coordinate. 
To make a 3D Point Cloud from Kinect data, with each 
pixel in both color and depth image, we must know 
exactly the location of this pixel in the 3D coordinate to 
create an RGB-XYZ point in Point Cloud. To solve that 
problem, a lot of work has focused on developing a 
good calibration method in order to transform between 
color-coordinate, depth coordinate and real world 
coordinate such as Microsoft Kinect SDK. 

In this project, we used Microsoft Kinect SDK to 
convert depth coordinate to color coordinate, then use 
parameter from to convert to 3D coordinates. Given a 
depth and color image. For each pixel in the depth 
image, we can find its 3D coordinate in meter by this 
formula: 
 
 
 
 
 
where xc and yc is the pixel coordinate in color image, 
cxc , cyc , f xc , f yc is taken from color intrinsic matrix, 
depth(xc , yc) is the depth value of pixel. This process is 
illustrated by Fig. 3. 
– Filtering: Because there are a lot of points in point 
cloud (about 300.000 points with VGA resolution), so 
the system becomes time-consuming and cannot run in 
the real-time. To reduce the execution time, point cloud 
will be down-sampled using 2x2 block. Consequently, 

the number of points in the cloud will be reduced by 4 
times. 
– Rotating Point Cloud: As mentioned in section 3, our 
system using mobile Kinect, which means Kinect 
mounted on the body. Therefore, while the visually 
impaired people moving, because Kinect is shocked, 
shaking so that the point cloud will be rotated due the 
changing of Kinect direction. In our project, we used 
accelerometer data provided by Kinect SDK to rotate 
point cloud in order to align the ground plane with the 
xz-plane in reference system. 

The accelerometer data is actually a 3-D vector 
point- ing in the direction of gravity with coordinate 
system is centered on the sensor shown in the Fig. 5. 
With the default Kinect configuration (horizontal) is 
represented by the (x, y, z, w) vector whose value is (0, -
1.0, 0, 0). We use this vector to build rotation matrix 
and then apply it into point cloud data in order to rotate 
point cloud. Fig. 4 shown the output of this stage. 

 
Fig 3. Coordinate Transformation Process 

4.2. Ground and walls plane detection 
– Plane Segmentation: Finally, point cloud will be 
segmented into dominant planes. This is very important 
step because our algorithms based on the ground plane 
detection. The plane based segmentation using in this 
project is based on the algorithm which uses the normal 
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Fig. 4: Coordinate Transformation Process

Fig. 5: Point Cloud rotation using normal vector of
ground plane (while arrow): left: before rotating, right:
after rotating

consuming. In this algorithm, the authors proposed
a new normal vector estimation using an integral
image, so it can run in real time. This algorithm
can be illustrated in Fig. 7. A normal vector of a
single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m
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two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m

4 V. Hoang et al.

To do that, we mount Kinect with a belt on user
body and connect to the laptop on a backpack. The
reason to do that is because Kinect is a peripheral de-
vice so it mandatory to connect to a computer to work.
On the computer side, we built a program which col-
lects data from Kinect and stores on a hard disk.

To detect obstacles, first we use data from Kinect
(color image, depth image and accelerometer data) to
build point cloud. Then we detect ground plane and
walls plane in the image by using plane segmentation
in point cloud proposed by [6]. After that, we detect
all obstacles in the scene including static obstacle and
human and check for the nearest obstacle to make a
warning messages. This whole process can be seen in
the Fig. 3

3.2.1 Reconstruction

This step contains reconstruction, filtering and rotating
point cloud:

– Reconstruction: In this stage, depth and color im-
age will be combined to make a 3D Point Cloud
using Point Cloud Library (PCL)[11].
Kinect is a low-cost RGB-D camera that can pro-
vide various types of data including color image,
depth image, accelerometer data, skeleton informa-
tion, sound from microarrays. However, with the
color and depth image, because they were captured
by two di↵erent sensors, so they are not aligned.
That means that given a pixel in the color image,
cannot get correspondent pixel in depth image di-
rectly as well as 3D coordinate. To make a 3D Point
Cloud from Kinect data, with each pixel in both
color and depth image, we must know exactly the lo-
cation of this pixel in the 3D coordinate to create an
RGB-XYZ point in Point Cloud. To solve that prob-
lem, a lot of work has focused on developing a good
calibration method in order to transform between
color-coordinate, depth coordinate and real world
coordinate such as Microsoft Kinect SDK, Nicolas
Burrus [7],Titus Tang [15]).
In this project, we used Microsoft Kinect SDK to
convert depth coordinate to color coordinate, then
use parametter from [7] to convert to 3D coordi-
nates. Given a depth and color image. For each pixel
in the depth image, we can find it’s 3D coordinate
in meter by this formula:

P3D.x = (xc � cxc) ⇤ depth(xc, yc)/fxc

P3D.y = (yc � cyc) ⇤ depth(xc, yc)/fyc

P3D.z = depth(xc, yc)

where xc and yc is the pixel coordinate in color im-
age, cxc, cyc, fxc, fyc is taken from color intrinsic
matrix, depth(xc, yc) is the depth value of pixel.
This process is illustrated by Fig. 4.

– Filtering: Because there are a lot of points in point
cloud (about 300.000 points with VGA resolution),
so the system becomes time-consuming and cannot
run in the real-time. To reduce the execution time,
point cloud will be down-sampled using 2x2 block.
So that the number of points in the cloud will be
reduced by 4 times.

– Rotating Point Cloud: As mentioned in section
3, our system using mobile Kinect, which means
Kinect mounted on the body. Therefore, while the
visually impaired people moving, because Kinect is
shocked, shaking so that the point cloud will be ro-
tated due the changing of Kinect direction. In our
project, we used accelerometer data provided by
Kinect SDK to rotate point cloud in order to align
the ground plane with the xz-plane in reference sys-
tem.
The accelerometer data is actually a 3-D vector point-
ing in the direction of gravity with coordinate sys-
tem is centered on the sensor shown in the Fig. 6.
With the default Kinect configuration (horizontal)
is represented by the (x, y, z, w) vector whose value
is (0, -1.0, 0, 0). We use this vector to build rotation
matrix and then apply it into point cloud data in or-
der to rotate point cloud. Fig. 5 shown the output
of this stage.

3.2.2 Ground and walls plane detection

– Plane Segmentation: Finally, point cloud will be
segmented into dominant planes. This is very im-
portant step because our algorithms based on the
ground plane detection. The plane based segmen-
tation using in this project is based on [6] (this
algorithm is also integrated as a function in PCL
library) which uses the normal vector to segment
point cloud data into multiple planes in real time.
The main idea and also the advantages of this algo-
rithm is that plane segmentation can be done very
fast using both information in image structure and
point cloud data. Because after converting color and
depth image to point cloud data, each pixel is the
point in the 3D space and the relationship between
pixels is lost. For example, when we want to find
the neighbors of the point in the point cloud, we
must calculate the distance between this point with
all remaining points in the point cloud or do some
sorting algorithms like KD-tree, this process is time

Fig 2. Obstacle Detection Process 



vector to segment point cloud data into multiple planes 
in real time. The main idea and also the advantages of 
this algorithm is that plane segmentation can be done 
very fast using both information in image structure and 
point cloud data. Because after converting color and 
depth image to point cloud data, each pixel is the point 
in the 3D space and the relationship between pixels is 
lost. For example, when we want to find the neighbors 
of the point in the point cloud, we must calculate the 
distance between this point with all remaining points in 
the point cloud or do some sorting algorithms like KD-
tree, this process is time consuming. In this algorithm, 
the authors proposed a new normal vector estimation 
using an integral image, so it can run in real time. This 
algorithm can be illustrated in Fig. 5.  

Fig 4. Point Cloud rotation using normal vector of 
ground plane (while arrow): left: before rotating, right: 
after 
rotating 

 

 
 

  
A normal vector of a single point can be calculated 

be a cross product of two vectors of four neighbor 
points: bottom-top and left-right. So, in this algorithm, 
the authors first calculate two maps of tangential 
vectors, one for x- and the other for y-dimension. After 
normal estimation, planes can be detected by 
segmentation in normal space. The result of this step can 
be shown in Fig. 6. 

 
Fig 6. Normal vector estimation algorithms 

(a) Normal vector of the center point can be calculated 
by a cross product of two vectors of four neighbor 
points (red) and (b) Normal vector estimation in a scene. 

– Ground and Wall plane detection: After planes have 
been segmented, ground and wall planes can be detected 
easily using some constraints. Because our point cloud 
has been rotated to align with ground plane in the 
previous step using gravity vector. So, the ground plane 
must be satisfied some condition: 
– The angle between gravity vector and ground plane’s 
normal vector is almost 0 degree 
– Ground plane must be large enough. In our case, we 
checked number of point inside a ground plane, if the 
number of points is larger than 10000 points, then we 
consider it’s a ground plane candidate 
– Because Kinect’s mounted at the human body, so 
distance between ground plane and Kinect (y- axis 
coordinates) must be in a range of 0.8-1.2m 

Wall is considered as perpendicular plane to the 
ground plane. So, to detect wall planes, we use similar 
constraints with ground plane except the angle between 
gravity vector and wall’s normal vector is almost 90 
degree and don’t need to check distance between wall 
plane and the Kinect because wall plane can be appear 
anywhere in our scene. Then, all the point belonging to 
ground and walls plane will be removed. Fig. 7 shows 
the ground and wall plane detection results. 

 
Fig 7. Plane segmentation 

4.3. Obstacle detection 
In this step, we will detect obstacles from the 

remaining point cloud. There are two kind of obstacle: 
human and static object. With human detection, 
Microsoft Kinect SDK also provided human 
segmentation data. Kinect can track up to 6 people in a 
camera field-of-view. This data is encoded as 3 lowest 
bit for each pixel in depth image and represented index 
of the person that Kinect has been tracked.  

After checking human data in the frame, we remove 
all point that belong to the human in the point cloud and 
do clustering to find remaining obstacle in the scene. To 
do this, firstly, all points in the cloud will be rearranged 
by coordinate using the KD-tree algorithm. Then, based 
on the Euclidean clustering algorithm provided by PCL 
library, each obstacle will be segmented from the point 
cloud. For obstacles lying on the ground, we calculate 
the distance to the user to give a warning message.  
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Fig. 7: Normal vector estimation algorithms[6] (a) Nor-
mal vector of the center point can be calculated by a
cross product of two vectors of four neighbor points
(red), (b) Normal vector estimation in a scene

Fig. 8: Plane Segmentation using algorithm proposed
in [6]

Wall is considered as perpendicular plane to the
ground plane. So, to detect wall planes, we use sim-
ilar constraints with ground plane except the an-
gle between gravity vector and wall’s normal vector
is almost 90 degree and don’t need to check dis-
tance between wall plane and the Kinect because
wall plane can be appear anywhere in our scene.
Then, all the point belonging to ground and walls
plane will be removed.
Fig. 9 shown the ground and wall plane detection
results

3.2.3 Obstacle detection

In this step, we’ll detect obstacles from the remaining
point cloud . There are two kind of obstacle: human and
static object. With human detection, Microsoft Kinect
SDK also provided human segmentation data. Kinect
can track up to 6 person in a camera field-of-view. This
data is encoded as 3 lowest bit for each pixel in depth
image and represented index of the person that Kinect

Fig. 9: Detected Ground and Walls plane (ground: blue,
wall: red)

has been tracked. Fig. 11 show an example of human
segmentation data capture from Kinect.

After checking human data in the frame, we re-
move all point that belong to the human in the point
cloud and do clustering to find remaining obstacle in the
scene. To do this, firstly, all points in the cloud will be
re-arranged by coordinate using the KD-tree algorithm.
Then, based on the Euclidean clustering algorithm pro-
vided by PCL library, each obstacle will be segmented
from the point cloud. For obstacles lying on the ground,
we calculate the distance to the user to give a warning
message

3.2.4 Write Output Data

At this step, all detected obstacle will be checked to give
a final warning message. These obstacles include wall,
human, static object. Because there may be more than
one obstacle in a frame, so we need to know that what’s
obstacle that visually-impaired people should avoid.

To do simple warning message, first, we check if
obstacle is larger than a threshold, then check for the
nearest obstacle in front of the visually-impaired peo-
ple. Then we quantized the 3D position into 3 levels of
distance (near range, medium range, far range) and 3
levels of direction (left,front,right), write this informa-
tion to output file in order to send this information to
warning module.

3.3 Obstacle warning

As presented previously, once obstacles have been de-
tected, the second task is to send this information of
obstacles to the blind. In our system, the Tongue Dis-
play Unit is used for conveying the instructions to the
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segmentation data capture from Kinect.

After checking human data in the frame, we re-
move all point that belong to the human in the point
cloud and do clustering to find remaining obstacle in the
scene. To do this, firstly, all points in the cloud will be
re-arranged by coordinate using the KD-tree algorithm.
Then, based on the Euclidean clustering algorithm pro-
vided by PCL library, each obstacle will be segmented
from the point cloud. For obstacles lying on the ground,
we calculate the distance to the user to give a warning
message

3.2.4 Write Output Data

At this step, all detected obstacle will be checked to give
a final warning message. These obstacles include wall,
human, static object. Because there may be more than
one obstacle in a frame, so we need to know that what’s
obstacle that visually-impaired people should avoid.

To do simple warning message, first, we check if
obstacle is larger than a threshold, then check for the
nearest obstacle in front of the visually-impaired peo-
ple. Then we quantized the 3D position into 3 levels of
distance (near range, medium range, far range) and 3
levels of direction (left,front,right), write this informa-
tion to output file in order to send this information to
warning module.

3.3 Obstacle warning

As presented previously, once obstacles have been de-
tected, the second task is to send this information of
obstacles to the blind. In our system, the Tongue Dis-
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consuming. In this algorithm, the authors proposed
a new normal vector estimation using an integral
image, so it can run in real time. This algorithm
can be illustrated in Fig. 7. A normal vector of a
single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m
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single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m

Fig 5. Kinect coordinate 



The Pioneer LX is an advanced mobile robotics 
research platform based on the Adept Lynx industrial 
AIV (Autonomous Intelligent Vehicle).  This ground 
robot is programmable, and easy to add, switch and 
customize different sensors, effectors and other 
equipment for new projects 

 
Fig 8. Pioneer LX Robot 

The Pioneer LX has been designed for continuous 
non-stop industrial service and can operate up to 13 
hours before recharging.  This autonomous mobile robot 
can carry payloads of up to 60 kg over indoor surfaces 
in wheelchair-accessible facilities that resemble a 
wheelchair. 

The Pioneer LX can travel at speeds up to 2 m/s with 
full payload.  As with other MobileRobot platforms, the 
Pioneer LX includes extensive Pioneer SDK, a set of 
software applications and libraries to accelerate the pace 
of development.  All of our robotics platforms can also 
be used in a “semi-autonomous” fashion in which the 
robots will navigate autonomously but respond to 
commands from a remote control computer. 
 
6. EXPERIMENT 
 In order to test the obstacle detection program, we 
connect and send the instruction to the robot based on 
the obstacle detection result. The following Fig.9 shows 
the scenario to test. 

Fig 9. The test scenario 
 The robot was required to perform the route from 
point A to point B in a corridor. There are three types of 

objects on the path, the fire extinguisher, the flower pot 
and the dust bin. To finish the route, the instruction for 

the robot has to be made based on the constraints. In our 
case, we used the angle constraint because the robot can 
rotate around itself and then go straight. The following 
Fig.10 shows the angle condition. 

Fig 10. Angle regulation 
 M and N are the mid point of the side of object (ex: 
dust-bin) and the front of robot. The angle α is the 
angle between MN line and the line connecting the 
edge of object and midpoint N of the robot while the 
angle β is the angle between MN line and the line 
connecting the edge of robot and the midpoint M of 
the object. Kinect can also calculate the angle through 
vector calculating. The robot when detecting the 
object will stop and calculate these angles. After that 
it will rotate an angle = (α + β) in order not to collide 
with the object. Then it will continue to travel until 
detecting the next objects.  
7. RESULTS 

For obstacle detection evaluation, we tested our 
program with 248 images collected from MICA 
hallway. Our system was evaluated on a notebook with 
an In1tel Core i3 2328M processor and 6GB memory 
inside. The system operates at an average speed of 2 Hz 
(493 ms/frame) with downsample block is 2x2 (about 
75000 points in point cloud) , which is fast enough to be 
used in practice. 

Fig. 11 shows average detection time of each step 
and the whole process.  

 
Fig 11. Detection time 

To make evaluation, we used precision, recall and F-
measure measurement: 
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Fig. 17: Average voltage results measured on di↵erent
regions of the tongue

regions are designated based on the lowest average volt-
age which is defined as V0 in Fig. 18. They are then
written in the control program to adjust the voltage
level automatically for the next tests. The value of V0
depends on the perception of each participant and is
determined prior to the obstacle warning test.

Fig. 18: Voltage level calculation

4.4 Evaluation of obstacle detection

For obstacle detection evaluation, we tested our pro-
gram with 248 images collected from MICA hallway.
Our system was evaluated on a notebook with an In-
tel Core i3 2328M processor and 6GB memory inside.
The system operates at an average speed of 2 Hz (493
ms/frame) with downsample block is 2x2 (about 75000
points in point cloud) , which is fast enough to be used
in practice.

Fig. 19 shows average detection time of each step
and the whole process.

To make evaluation, we used precision, recall and
F-measure measurement:
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Fig. 19: Detection Time

and

Recall =
TP

TP + FN

F = 2
Precision ⇤Recall

Precision+Recall

where:
TP: True Positive (true detection)
FP: False Positive (object detected not in ground truth)
FN: False Negative (miss detection )

We made two di↵erent evaluations on this dataset:
pixel level and object level. For pixel level, we used
Watershed algorithm on depth image to segment object
from the background and making the ground-truth. To
evaluation, we back project the point cloud into 2D
images to make binary mask of original image where
white pixels is the detected obstacle as shown in Fig.
20. Tab. II shows the results:

Table 3: Pixel level evaluation result (TP,FP,FN: mil-
lion pixels)

TP FP FN Precision Recall F-Measure
5.02 1.31 2.11 79% 70% 74.2%

For object level, we annotate manually each object
by a rectangle and determine a true detection if the
ratio between the intersection rectangle (between de-
tected rectangle and groundtruth rectangle) and the
union rectangle is larger than 0.5. Tab. III shows the
results:

4.5 User perception evaluation

In order to evaluate the performance of the proposed
prototype system, a perception experiment was con-
ducted for users. Based on the design of the electrode
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where: TP: True Positive (true detection) FP: False 
Positive (object detected not in ground truth) FN: False 
Negative (miss detection ) 

Table 1. Object detection result 

 
We made evaluations on this dataset on object 

detection. We used Watershed algorithm on depth image 
to segment object from the background and making the 
ground-truth. To evaluate, we back project the point 
cloud into 2D images to make binary mask of original 
image where white pixels is the detected obstacle as 
shown in Fig. 12.  

 
Fig 12. Obstacle Detection Result 

 For the scenario test, the Pioneer LX can finish 
without collision 36 trials in total 48 trials (75%). 
CONCLUSION  
The Mobile Robots Pioneer is designed for carrying up-
to-60 kg weight and working in indoor environment, 
which is appropriate for a wheelchair accessible. The 
Mobile Robot itself has the laser rangefinder sensor, 
ultrasonic sonar sensor, an Ubuntu-based embedded 
computer and a complete robot control system to 
navigate in the flat topology. The obstacle detection 
algorithm was presented for stationary obstacles. The 
Kinect 3D sensor has shown that it can calculate 
relatively accurate the distance to the obstacle and can 
help the robot to avoid the obstacle. This work focused 
on indoor environments and detection of static objects. 
A scenario of completing a route along corridor using a 
combination of Mobile Robot Pioneer LX and Kinect 
Sensor was conducted. Three classes of obstacles were 
considered and placed along the path: fire extinguisher, 
flower pot, dustbin. The resulted system gives relatively 
accurate detection and can instruct the robot to complete 
the scenario without bumping into given obstacles. The 
obstacle detection of 82.9% of precision and 75% of 
route completion without collision. 
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Fig. 20: Obstacle Detection Result. From left to right:
Color image, Depth image, Ground truth, Detected Ob-
stacle. Blue Rectangle: Ground truth/Detected Obsta-
cle, Red Rectangle: False Obstacle

Table 4: Object level evaluation result (TP,FP,FN: ob-
jects)

TP FP FN Precision Recall F-Measure
344 71 154 82.9% 69% 75.3%

matrix and the idea of stimulation pulses, we used a se-
quence of electrodes to represent eight directions. Each
direction corresponds to one radius line and the order
of stimulating electrodes is from center to the edge of
the tongue. Five participants took part in a training
session to adapt to the device then they were asked for
randomized directions. Fig. 21 shows the average accu-
racy of perception calculated on five participants. The
electrical intensity is generated based on the perception
evaluation in Fig. 18.

Fig. 21: Average accuracy of eight direction on the
tongue.

According to the feedback of users, the edge regions
of the tongue often gives good perception. Besides, the

left and right-front parts of the tongue achieves higher
accuracy than the rear parts. As a result, the obstacle
warning representation is suitable for users.

4.6 Mobility e�ciency evaluation

The mobility test was carried out on the representations
which demonstrate good recognition by the subjects in
the previous tongue perception test. A set of six blind-
folded sighted young adults voluntarily participated in
this test. Each participant performed two trials. In each
trial, after the V0 value was determined, the participant
was first adapted without moving to associate the elec-
trical stimulations with their corresponding directions.
Then he/she started walking according to the defined
navigation path. The navigation path is displayed in
Fig. 22. The arrows and the numbers show the direc-
tion and the order of the journey, respectively. During
the test, the behaviors toward the stimulation signal
of the participants are evaluated as true, false and un-
clear responses. The di↵erent responses were recorded
and discussed.

Fig. 22: Mobility route

All the participants were trained for five minutes.
They were able to perceive the electrical signal at ease
and had no di�culties in getting used to the electrodes.
When we take a look at the Fig. 23, it is interesting to
see that the number of steps slightly went down for the
second time. This is no surprise since people adapted
and remembered the environment after one trial. As
we saw from the test participants, in the second time,
they depended less on the instruction of the device and
follow their inscrint and the route on the memory. The
number of step for most cases is around one hundred.
For sighted people the number is around seventy. The
sighted individual can walk straight to the destination
but the blindfolded people could only walk in a sinuous
zigzag line and caused the number of step to increase.

There is one case that has very large number and
one case that has very small number. For the case of the
large number, according to our observation, the partic-
ipant did a lot of considering when walking and took
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