
REAL TIME OBSTACLE DETECTION AND AVOIDANCE USING
KINECT DEPTH SENSOR AND PIONEER LX MOBILE ROBOT

 Thanh-Huong Nguyen, Minh-Hoang Le

International Research Institute MICA, Hanoi University of Science and Technology
E-mail: thanh-huong.nguyen@mica.edu.vn

ABSTRACT This research has been conducted on an
Adept Mobile Robots Pioneer LX under the framework
of research for assistive systems for blind people.
Traditionally blind people used to employ long cane or
guided dog to take part in mobility activities. The
Mobile Robots Pioneer is designed for carrying up-to-60
kg weight and working in indoor environment, which is
appropriate for a wheelchair accessible. The Kinect 3D
sensor has the ability to detect and calculated relatively
accurate the distance to the obstacle, therefore it can
help the robot to avoid the obstacle and implement
navigation more easily. In this paper, a Kinect depth
based real time stationary obstacle detection algorithm
was presented. Besides, a scenario of completing a
trajectory along a long corridor using a combination of
Mobile Robot Pioneer LX and Kinect Sensor was
conducted.

1. INTRODUCTION
 According to the World Health Organization in
2014, there are around 286 million visually-impaired
people including 69 million blind people (WHO, 2014).
Vision loss results in independence loss, especially
limited mobility. Lack of mobility is a serious hindrance
for the individual. Blind people find difficulties to move
independently, as they cannot specify in advance the
traveling direction and object location along their path
and in the surrounding environment.
 The traditional aided mobility devices for most of the
blind people are the white cane and the guide dog. These
mobility choices support blind people to move through
known and unknown environment independently. The
white cane involves a simple cane and can detect
stationary obstacles through tactile feedback
(Armstrong, 1975). The guide dog can distinguish
complex situations such as cross walks, staircase and so
on. The resulted information is received via tactile
feedback. Another option is to use their audition to
compensate the vision loss. Recently blind people have
strongly used the sound in order to travel and maintain
their safety. Besides, the information from the
surrounding permits the blind people to recognize
through the sources and sounds from the surrounding,
such as traffic lights, traffic, noises from coming from
the machinery, animals or people, etc.

Wheelchair is one of the novel Electronic Travel Aid
System (ETA) which is not only used for blind people
but for handicapped people in general. The ETA systems
are based on three interfaces: the input interface, the
processing interface and the output interface. The input
interfaces collect the environmental data and are
classified in: ultrasound, laser, and artificial vision and
GPS system. The processing interface is composed of
the techniques and the software for processing all the
acquired information and for transforming it into
required data for the output interface. The output system
represents the model for transmitting the information
from the device to the user. It should be as much concise
and clear as possible, in order not to confuse and disturb
the user.
 Our proposed system utilizes the Kinect sensor as
the input interface and processes the environmental
information by the computer inside the mobile robot or
an integrated laptop. After processing the depth
information from the Kinect, the distance and the
direction of the obstacles are extracted. Then command
will be determined to avoid obstacle and the instruction
will be transferred to the robot automatically.

2. RELATED WORK
 An autonomous and intelligent mobile robotic
assistant system is proposed in this paper to make it
possible for the disabled to live independently, safely
and comfortably rather than move to a costly healthcare
facility. The system works in a coordinated and efficient
manner to carry out the tasks. The intelligent mobile
robots navigate autonomously through the home
environment and transmit the data through wireless
network to the remote control center.
 A robot manipulator is developed to assist workers
with disabilities (Hun et al., 2005). This robot
manipulator is designed to carry out the task as PCB
circuit testing and inspection of soldering. An
electromyographic (EMG) based semiautonomous
human – robot interaction system is presented (Rani et
al., 2005). It allows the disabilities can send high-level
commands to robot for some daily living activities. A
guide dog robot and a stereotyped motion following a
person are developed. The guide dog robot consists of a
mission planner, digital map, interactive navigator,

vision system and undercarriage system (Mori and Sano,
1991).
 A whole-field target tracking and following mobile
robot system is developed based on a pan/tilt/zoom
CCD vision system. The vision system scans and locks
the pose of the moving target and commands the
tracking mobile robot to follow the target while
avoiding obstacles (Lee et al.,2013). This paper
proposed a novel appearance design and fabrication on
an existing mobile robot to assist blind people to
achieve independent living and communicate through
established social networking. The mobile robot control
system is presented in two other separate papers as the
intelligent control system and visual servo control
system (Lee and Chiu, 2013).
 In this paper, the designed system is a guide robot
connected to a depth camera Kinect which later can be
developed as a wheelchair. This human machine
interface allows a convenient operation. The resulting
automatic navigation provides the optimal and collision-
free path. It significantly reduces the risk for blind users
in unfamiliar environment.

3. OVERVIEW OF THE SYSTEM
 The obstacle detection module takes scene
information from a mobile Kinect. In our prototype, the
obstacle detection is running on a laptop mounted on a
backpack of the visually impaired people and mobile
Kinect is the Kinect with battery so that it can be
mounted easily on the human body for collecting data
and transferring data to the laptop. The scene
information, in our case, is the color image, depth
image, and accelerometer information provided by
Kinect.
 Concerning the actuator, the pioneer Mobile Lx was
used to perform the mobility based on the information
that the Kinect processed. In our work, we consider
indoor environment where obstacles are defined as
objects in front, obstructing or endangering while blind
people are moving. Specifically, we focus on detecting
static objects (e.x. trash, plant pots, fire extinguisher). In
the following, we will describe in detail the obstacle
detection.

3. MICROSOFT KINECT

After introducing the Kinect sensor for Microsoft’s
Xbox 360 in November 2010 and a version for

Windows on February 1, 2012 many computer scientists
have used the Kinect as a robotic sensor. It is low cost
sensor that includes both an RGB channel and a 3D
depth channel, which can provide more information of
the scene, work well in a low light environment and
they are efficient for real-time processing.

RGB-D camera captures both RGB images and
depth maps at a resolution of 640× 480 pixels with 30
frames per second. The effective depth range of the
Kinect RGB-D camera is from 0.4 to 3.5 m. The Kinect
color stream supports a speed of 30 frames per second
(FPS) at a resolution of 640 x 480 pixels. The main
purpose of using Microsoft Kinect sensor is to
reconstruct 3D scene in front of the user from Color-
Depth that represents a crucial data which is necessary
information for visually impaired people. The system
proposed using a laptop for processing color-depth
images to extract accurate information about the

obstacles.
Fig 1. The structure of Microsoft Kinect Sensor

4. OBSTACLE DETECTION

The depth information was processed using the Point
Cloud Library (PCL). The PCL support the OpenNI and
Kinect SDK interface. In addition to PCL, some
libraries can be also used such as OpenCV, Boost, Eigen
and so on. To detect obstacles, first we use data from
Kinect (color image, depth image and accelerometer
data) to build point cloud. Then we detect ground plane
and walls plane in the image by using plane
segmentation in point cloud proposed by Holz et al.,
2012. After that, we detect all obstacles in the scene
including static obstacle and human and check for the
nearest obstacle to make the instruction for the robot.
This whole process can be seen in the Fig. 2.
4.1. Reconstruction
This step contains reconstruction, filtering and rotating
point cloud:

– Reconstruction: In this stage, depth and color image
will be combined to make a 3D Point Cloud using Point
Cloud Library (PCL).Kinect is a low-cost RGB-D
camera that can provide various types of data including
color image, depth image, accelerometer data, skeleton
information, sound from microarrays. However, the
color and depth image were captured by two different
sensors hence they are not aligned. That means given a
pixel in the color image, we cannot get correspondent
pixel in depth image directly as well as 3D coordinate.
To make a 3D Point Cloud from Kinect data, with each
pixel in both color and depth image, we must know
exactly the location of this pixel in the 3D coordinate to
create an RGB-XYZ point in Point Cloud. To solve that
problem, a lot of work has focused on developing a
good calibration method in order to transform between
color-coordinate, depth coordinate and real world
coordinate such as Microsoft Kinect SDK.

In this project, we used Microsoft Kinect SDK to
convert depth coordinate to color coordinate, then use
parameter from to convert to 3D coordinates. Given a
depth and color image. For each pixel in the depth
image, we can find its 3D coordinate in meter by this
formula:

where xc and yc is the pixel coordinate in color image,
cxc , cyc , f xc , f yc is taken from color intrinsic matrix,
depth(xc , yc) is the depth value of pixel. This process is
illustrated by Fig. 3.
– Filtering: Because there are a lot of points in point
cloud (about 300.000 points with VGA resolution), so
the system becomes time-consuming and cannot run in
the real-time. To reduce the execution time, point cloud
will be down-sampled using 2x2 block. Consequently,

the number of points in the cloud will be reduced by 4
times.
– Rotating Point Cloud: As mentioned in section 3, our
system using mobile Kinect, which means Kinect
mounted on the body. Therefore, while the visually
impaired people moving, because Kinect is shocked,
shaking so that the point cloud will be rotated due the
changing of Kinect direction. In our project, we used
accelerometer data provided by Kinect SDK to rotate
point cloud in order to align the ground plane with the
xz-plane in reference system.

The accelerometer data is actually a 3-D vector
point- ing in the direction of gravity with coordinate
system is centered on the sensor shown in the Fig. 5.
With the default Kinect configuration (horizontal) is
represented by the (x, y, z, w) vector whose value is (0, -
1.0, 0, 0). We use this vector to build rotation matrix
and then apply it into point cloud data in order to rotate
point cloud. Fig. 4 shown the output of this stage.

Fig 3. Coordinate Transformation Process

4.2. Ground and walls plane detection
– Plane Segmentation: Finally, point cloud will be
segmented into dominant planes. This is very important
step because our algorithms based on the ground plane
detection. The plane based segmentation using in this
project is based on the algorithm which uses the normal

Obstacle detection and warning for visually impaired people based on electrode matrix and mobile Kinect 5

Fig. 3: Obstacle Detection Process

Depth Image

Calibrated
Depth
Image

Point Cloud
Data

Color Image

Depth
Coordinate

Color
Coordinate

3D
Coordinate

Kinect SDK

Nicolas Burrus parameter

Fig. 4: Coordinate Transformation Process

Fig. 5: Point Cloud rotation using normal vector of
ground plane (while arrow): left: before rotating, right:
after rotating

consuming. In this algorithm, the authors proposed
a new normal vector estimation using an integral
image, so it can run in real time. This algorithm
can be illustrated in Fig. 7. A normal vector of a
single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m

Obstacle detection and warning for visually impaired people based on electrode matrix and mobile Kinect 5

Fig. 3: Obstacle Detection Process

Depth Image

Calibrated
Depth
Image

Point Cloud
Data

Color Image

Depth
Coordinate

Color
Coordinate

3D
Coordinate

Kinect SDK

Nicolas Burrus parameter

Fig. 4: Coordinate Transformation Process

Fig. 5: Point Cloud rotation using normal vector of
ground plane (while arrow): left: before rotating, right:
after rotating

consuming. In this algorithm, the authors proposed
a new normal vector estimation using an integral
image, so it can run in real time. This algorithm
can be illustrated in Fig. 7. A normal vector of a
single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m

4 V. Hoang et al.

To do that, we mount Kinect with a belt on user
body and connect to the laptop on a backpack. The
reason to do that is because Kinect is a peripheral de-
vice so it mandatory to connect to a computer to work.
On the computer side, we built a program which col-
lects data from Kinect and stores on a hard disk.

To detect obstacles, first we use data from Kinect
(color image, depth image and accelerometer data) to
build point cloud. Then we detect ground plane and
walls plane in the image by using plane segmentation
in point cloud proposed by [6]. After that, we detect
all obstacles in the scene including static obstacle and
human and check for the nearest obstacle to make a
warning messages. This whole process can be seen in
the Fig. 3

3.2.1 Reconstruction

This step contains reconstruction, filtering and rotating
point cloud:

– Reconstruction: In this stage, depth and color im-
age will be combined to make a 3D Point Cloud
using Point Cloud Library (PCL)[11].
Kinect is a low-cost RGB-D camera that can pro-
vide various types of data including color image,
depth image, accelerometer data, skeleton informa-
tion, sound from microarrays. However, with the
color and depth image, because they were captured
by two di↵erent sensors, so they are not aligned.
That means that given a pixel in the color image,
cannot get correspondent pixel in depth image di-
rectly as well as 3D coordinate. To make a 3D Point
Cloud from Kinect data, with each pixel in both
color and depth image, we must know exactly the lo-
cation of this pixel in the 3D coordinate to create an
RGB-XYZ point in Point Cloud. To solve that prob-
lem, a lot of work has focused on developing a good
calibration method in order to transform between
color-coordinate, depth coordinate and real world
coordinate such as Microsoft Kinect SDK, Nicolas
Burrus [7],Titus Tang [15]).
In this project, we used Microsoft Kinect SDK to
convert depth coordinate to color coordinate, then
use parametter from [7] to convert to 3D coordi-
nates. Given a depth and color image. For each pixel
in the depth image, we can find it’s 3D coordinate
in meter by this formula:

P3D.x = (xc � cxc) ⇤ depth(xc, yc)/fxc

P3D.y = (yc � cyc) ⇤ depth(xc, yc)/fyc

P3D.z = depth(xc, yc)

where xc and yc is the pixel coordinate in color im-
age, cxc, cyc, fxc, fyc is taken from color intrinsic
matrix, depth(xc, yc) is the depth value of pixel.
This process is illustrated by Fig. 4.

– Filtering: Because there are a lot of points in point
cloud (about 300.000 points with VGA resolution),
so the system becomes time-consuming and cannot
run in the real-time. To reduce the execution time,
point cloud will be down-sampled using 2x2 block.
So that the number of points in the cloud will be
reduced by 4 times.

– Rotating Point Cloud: As mentioned in section
3, our system using mobile Kinect, which means
Kinect mounted on the body. Therefore, while the
visually impaired people moving, because Kinect is
shocked, shaking so that the point cloud will be ro-
tated due the changing of Kinect direction. In our
project, we used accelerometer data provided by
Kinect SDK to rotate point cloud in order to align
the ground plane with the xz-plane in reference sys-
tem.
The accelerometer data is actually a 3-D vector point-
ing in the direction of gravity with coordinate sys-
tem is centered on the sensor shown in the Fig. 6.
With the default Kinect configuration (horizontal)
is represented by the (x, y, z, w) vector whose value
is (0, -1.0, 0, 0). We use this vector to build rotation
matrix and then apply it into point cloud data in or-
der to rotate point cloud. Fig. 5 shown the output
of this stage.

3.2.2 Ground and walls plane detection

– Plane Segmentation: Finally, point cloud will be
segmented into dominant planes. This is very im-
portant step because our algorithms based on the
ground plane detection. The plane based segmen-
tation using in this project is based on [6] (this
algorithm is also integrated as a function in PCL
library) which uses the normal vector to segment
point cloud data into multiple planes in real time.
The main idea and also the advantages of this algo-
rithm is that plane segmentation can be done very
fast using both information in image structure and
point cloud data. Because after converting color and
depth image to point cloud data, each pixel is the
point in the 3D space and the relationship between
pixels is lost. For example, when we want to find
the neighbors of the point in the point cloud, we
must calculate the distance between this point with
all remaining points in the point cloud or do some
sorting algorithms like KD-tree, this process is time

Fig 2. Obstacle Detection Process

vector to segment point cloud data into multiple planes
in real time. The main idea and also the advantages of
this algorithm is that plane segmentation can be done
very fast using both information in image structure and
point cloud data. Because after converting color and
depth image to point cloud data, each pixel is the point
in the 3D space and the relationship between pixels is
lost. For example, when we want to find the neighbors
of the point in the point cloud, we must calculate the
distance between this point with all remaining points in
the point cloud or do some sorting algorithms like KD-
tree, this process is time consuming. In this algorithm,
the authors proposed a new normal vector estimation
using an integral image, so it can run in real time. This
algorithm can be illustrated in Fig. 5.

Fig 4. Point Cloud rotation using normal vector of
ground plane (while arrow): left: before rotating, right:
after
rotating

A normal vector of a single point can be calculated

be a cross product of two vectors of four neighbor
points: bottom-top and left-right. So, in this algorithm,
the authors first calculate two maps of tangential
vectors, one for x- and the other for y-dimension. After
normal estimation, planes can be detected by
segmentation in normal space. The result of this step can
be shown in Fig. 6.

Fig 6. Normal vector estimation algorithms

(a) Normal vector of the center point can be calculated
by a cross product of two vectors of four neighbor
points (red) and (b) Normal vector estimation in a scene.

– Ground and Wall plane detection: After planes have
been segmented, ground and wall planes can be detected
easily using some constraints. Because our point cloud
has been rotated to align with ground plane in the
previous step using gravity vector. So, the ground plane
must be satisfied some condition:
– The angle between gravity vector and ground plane’s
normal vector is almost 0 degree
– Ground plane must be large enough. In our case, we
checked number of point inside a ground plane, if the
number of points is larger than 10000 points, then we
consider it’s a ground plane candidate
– Because Kinect’s mounted at the human body, so
distance between ground plane and Kinect (y- axis
coordinates) must be in a range of 0.8-1.2m

Wall is considered as perpendicular plane to the
ground plane. So, to detect wall planes, we use similar
constraints with ground plane except the angle between
gravity vector and wall’s normal vector is almost 90
degree and don’t need to check distance between wall
plane and the Kinect because wall plane can be appear
anywhere in our scene. Then, all the point belonging to
ground and walls plane will be removed. Fig. 7 shows
the ground and wall plane detection results.

Fig 7. Plane segmentation

4.3. Obstacle detection
In this step, we will detect obstacles from the

remaining point cloud. There are two kind of obstacle:
human and static object. With human detection,
Microsoft Kinect SDK also provided human
segmentation data. Kinect can track up to 6 people in a
camera field-of-view. This data is encoded as 3 lowest
bit for each pixel in depth image and represented index
of the person that Kinect has been tracked.

After checking human data in the frame, we remove
all point that belong to the human in the point cloud and
do clustering to find remaining obstacle in the scene. To
do this, firstly, all points in the cloud will be rearranged
by coordinate using the KD-tree algorithm. Then, based
on the Euclidean clustering algorithm provided by PCL
library, each obstacle will be segmented from the point
cloud. For obstacles lying on the ground, we calculate
the distance to the user to give a warning message.

5. PIONEER LX MOBILE ROBOT

6 V. Hoang et al.

(a) (b)

Fig. 7: Normal vector estimation algorithms[6] (a) Nor-
mal vector of the center point can be calculated by a
cross product of two vectors of four neighbor points
(red), (b) Normal vector estimation in a scene

Fig. 8: Plane Segmentation using algorithm proposed
in [6]

Wall is considered as perpendicular plane to the
ground plane. So, to detect wall planes, we use sim-
ilar constraints with ground plane except the an-
gle between gravity vector and wall’s normal vector
is almost 90 degree and don’t need to check dis-
tance between wall plane and the Kinect because
wall plane can be appear anywhere in our scene.
Then, all the point belonging to ground and walls
plane will be removed.
Fig. 9 shown the ground and wall plane detection
results

3.2.3 Obstacle detection

In this step, we’ll detect obstacles from the remaining
point cloud . There are two kind of obstacle: human and
static object. With human detection, Microsoft Kinect
SDK also provided human segmentation data. Kinect
can track up to 6 person in a camera field-of-view. This
data is encoded as 3 lowest bit for each pixel in depth
image and represented index of the person that Kinect

Fig. 9: Detected Ground and Walls plane (ground: blue,
wall: red)

has been tracked. Fig. 11 show an example of human
segmentation data capture from Kinect.

After checking human data in the frame, we re-
move all point that belong to the human in the point
cloud and do clustering to find remaining obstacle in the
scene. To do this, firstly, all points in the cloud will be
re-arranged by coordinate using the KD-tree algorithm.
Then, based on the Euclidean clustering algorithm pro-
vided by PCL library, each obstacle will be segmented
from the point cloud. For obstacles lying on the ground,
we calculate the distance to the user to give a warning
message

3.2.4 Write Output Data

At this step, all detected obstacle will be checked to give
a final warning message. These obstacles include wall,
human, static object. Because there may be more than
one obstacle in a frame, so we need to know that what’s
obstacle that visually-impaired people should avoid.

To do simple warning message, first, we check if
obstacle is larger than a threshold, then check for the
nearest obstacle in front of the visually-impaired peo-
ple. Then we quantized the 3D position into 3 levels of
distance (near range, medium range, far range) and 3
levels of direction (left,front,right), write this informa-
tion to output file in order to send this information to
warning module.

3.3 Obstacle warning

As presented previously, once obstacles have been de-
tected, the second task is to send this information of
obstacles to the blind. In our system, the Tongue Dis-
play Unit is used for conveying the instructions to the

6 V. Hoang et al.

(a) (b)

Fig. 7: Normal vector estimation algorithms[6] (a) Nor-
mal vector of the center point can be calculated by a
cross product of two vectors of four neighbor points
(red), (b) Normal vector estimation in a scene

Fig. 8: Plane Segmentation using algorithm proposed
in [6]

Wall is considered as perpendicular plane to the
ground plane. So, to detect wall planes, we use sim-
ilar constraints with ground plane except the an-
gle between gravity vector and wall’s normal vector
is almost 90 degree and don’t need to check dis-
tance between wall plane and the Kinect because
wall plane can be appear anywhere in our scene.
Then, all the point belonging to ground and walls
plane will be removed.
Fig. 9 shown the ground and wall plane detection
results

3.2.3 Obstacle detection

In this step, we’ll detect obstacles from the remaining
point cloud . There are two kind of obstacle: human and
static object. With human detection, Microsoft Kinect
SDK also provided human segmentation data. Kinect
can track up to 6 person in a camera field-of-view. This
data is encoded as 3 lowest bit for each pixel in depth
image and represented index of the person that Kinect

Fig. 9: Detected Ground and Walls plane (ground: blue,
wall: red)

has been tracked. Fig. 11 show an example of human
segmentation data capture from Kinect.

After checking human data in the frame, we re-
move all point that belong to the human in the point
cloud and do clustering to find remaining obstacle in the
scene. To do this, firstly, all points in the cloud will be
re-arranged by coordinate using the KD-tree algorithm.
Then, based on the Euclidean clustering algorithm pro-
vided by PCL library, each obstacle will be segmented
from the point cloud. For obstacles lying on the ground,
we calculate the distance to the user to give a warning
message

3.2.4 Write Output Data

At this step, all detected obstacle will be checked to give
a final warning message. These obstacles include wall,
human, static object. Because there may be more than
one obstacle in a frame, so we need to know that what’s
obstacle that visually-impaired people should avoid.

To do simple warning message, first, we check if
obstacle is larger than a threshold, then check for the
nearest obstacle in front of the visually-impaired peo-
ple. Then we quantized the 3D position into 3 levels of
distance (near range, medium range, far range) and 3
levels of direction (left,front,right), write this informa-
tion to output file in order to send this information to
warning module.

3.3 Obstacle warning

As presented previously, once obstacles have been de-
tected, the second task is to send this information of
obstacles to the blind. In our system, the Tongue Dis-
play Unit is used for conveying the instructions to the

Obstacle detection and warning for visually impaired people based on electrode matrix and mobile Kinect 5

Fig. 3: Obstacle Detection Process

Depth Image

Calibrated
Depth
Image

Point Cloud
Data

Color Image

Depth
Coordinate

Color
Coordinate

3D
Coordinate

Kinect SDK

Nicolas Burrus parameter

Fig. 4: Coordinate Transformation Process

Fig. 5: Point Cloud rotation using normal vector of
ground plane (while arrow): left: before rotating, right:
after rotating

consuming. In this algorithm, the authors proposed
a new normal vector estimation using an integral
image, so it can run in real time. This algorithm
can be illustrated in Fig. 7. A normal vector of a
single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m

Obstacle detection and warning for visually impaired people based on electrode matrix and mobile Kinect 5

Fig. 3: Obstacle Detection Process

Depth Image

Calibrated
Depth
Image

Point Cloud
Data

Color Image

Depth
Coordinate

Color
Coordinate

3D
Coordinate

Kinect SDK

Nicolas Burrus parameter

Fig. 4: Coordinate Transformation Process

Fig. 5: Point Cloud rotation using normal vector of
ground plane (while arrow): left: before rotating, right:
after rotating

consuming. In this algorithm, the authors proposed
a new normal vector estimation using an integral
image, so it can run in real time. This algorithm
can be illustrated in Fig. 7. A normal vector of a
single point can be calculated be a cross product of

Fig. 6: Kinect Coordinate

two vectors of four neighbor points: bottom-top and
left-right. So, in this algorithm, the authors first cal-
culate two maps of tangential vectors, one for x- and
the other for y-dimension. After normal estimation,
planes can be detected by segmentation in normal
space. The result of this step can be shown in Fig.
8

– Ground and Wall plane detection: After planes
have been segmented, ground and wall planes can be
detected easily using some constraints. Because our
point cloud has been rotated to align with ground
plane in the previous step using gravity vector. So,
the ground plane must be satisfied some condition:
– The angle between gravity vector and ground

plane’s normal vector is almost 0 degree
– Ground plane must be large enough. In our case,

we checked number of point inside a ground plane,
if the number of points is larger than 10000 points,
then we consider it’s a ground plane candidate

– Because Kinect’s mounted at the human body,
so distance between ground plane and Kinect (y-
axis coordinates) must be in a range of 0.8-1.2m

Fig 5. Kinect coordinate

The Pioneer LX is an advanced mobile robotics
research platform based on the Adept Lynx industrial
AIV (Autonomous Intelligent Vehicle). This ground
robot is programmable, and easy to add, switch and
customize different sensors, effectors and other
equipment for new projects

Fig 8. Pioneer LX Robot

The Pioneer LX has been designed for continuous
non-stop industrial service and can operate up to 13
hours before recharging. This autonomous mobile robot
can carry payloads of up to 60 kg over indoor surfaces
in wheelchair-accessible facilities that resemble a
wheelchair.

The Pioneer LX can travel at speeds up to 2 m/s with
full payload. As with other MobileRobot platforms, the
Pioneer LX includes extensive Pioneer SDK, a set of
software applications and libraries to accelerate the pace
of development. All of our robotics platforms can also
be used in a “semi-autonomous” fashion in which the
robots will navigate autonomously but respond to
commands from a remote control computer.

6. EXPERIMENT
 In order to test the obstacle detection program, we
connect and send the instruction to the robot based on
the obstacle detection result. The following Fig.9 shows
the scenario to test.

Fig 9. The test scenario
 The robot was required to perform the route from
point A to point B in a corridor. There are three types of

objects on the path, the fire extinguisher, the flower pot
and the dust bin. To finish the route, the instruction for

the robot has to be made based on the constraints. In our
case, we used the angle constraint because the robot can
rotate around itself and then go straight. The following
Fig.10 shows the angle condition.

Fig 10. Angle regulation
 M and N are the mid point of the side of object (ex:
dust-bin) and the front of robot. The angle α is the
angle between MN line and the line connecting the
edge of object and midpoint N of the robot while the
angle β is the angle between MN line and the line
connecting the edge of robot and the midpoint M of
the object. Kinect can also calculate the angle through
vector calculating. The robot when detecting the
object will stop and calculate these angles. After that
it will rotate an angle = (α + β) in order not to collide
with the object. Then it will continue to travel until
detecting the next objects.
7. RESULTS

For obstacle detection evaluation, we tested our
program with 248 images collected from MICA
hallway. Our system was evaluated on a notebook with
an In1tel Core i3 2328M processor and 6GB memory
inside. The system operates at an average speed of 2 Hz
(493 ms/frame) with downsample block is 2x2 (about
75000 points in point cloud) , which is fast enough to be
used in practice.

Fig. 11 shows average detection time of each step
and the whole process.

Fig 11. Detection time

To make evaluation, we used precision, recall and F-
measure measurement:

10 V. Hoang et al.

Fig. 17: Average voltage results measured on di↵erent
regions of the tongue

regions are designated based on the lowest average volt-
age which is defined as V0 in Fig. 18. They are then
written in the control program to adjust the voltage
level automatically for the next tests. The value of V0
depends on the perception of each participant and is
determined prior to the obstacle warning test.

Fig. 18: Voltage level calculation

4.4 Evaluation of obstacle detection

For obstacle detection evaluation, we tested our pro-
gram with 248 images collected from MICA hallway.
Our system was evaluated on a notebook with an In-
tel Core i3 2328M processor and 6GB memory inside.
The system operates at an average speed of 2 Hz (493
ms/frame) with downsample block is 2x2 (about 75000
points in point cloud) , which is fast enough to be used
in practice.

Fig. 19 shows average detection time of each step
and the whole process.

To make evaluation, we used precision, recall and
F-measure measurement:

Precison =
TP

TP + FP

500ms

400ms

300ms

200ms

100ms
127

165
201

493

Normal
Estimation

Plane
Segmentatio

n

Obstacle
Detection Total

Fig. 19: Detection Time

and

Recall =
TP

TP + FN

F = 2
Precision ⇤Recall

Precision+Recall

where:
TP: True Positive (true detection)
FP: False Positive (object detected not in ground truth)
FN: False Negative (miss detection)

We made two di↵erent evaluations on this dataset:
pixel level and object level. For pixel level, we used
Watershed algorithm on depth image to segment object
from the background and making the ground-truth. To
evaluation, we back project the point cloud into 2D
images to make binary mask of original image where
white pixels is the detected obstacle as shown in Fig.
20. Tab. II shows the results:

Table 3: Pixel level evaluation result (TP,FP,FN: mil-
lion pixels)

TP FP FN Precision Recall F-Measure
5.02 1.31 2.11 79% 70% 74.2%

For object level, we annotate manually each object
by a rectangle and determine a true detection if the
ratio between the intersection rectangle (between de-
tected rectangle and groundtruth rectangle) and the
union rectangle is larger than 0.5. Tab. III shows the
results:

4.5 User perception evaluation

In order to evaluate the performance of the proposed
prototype system, a perception experiment was con-
ducted for users. Based on the design of the electrode

10 V. Hoang et al.

Fig. 17: Average voltage results measured on di↵erent
regions of the tongue

regions are designated based on the lowest average volt-
age which is defined as V0 in Fig. 18. They are then
written in the control program to adjust the voltage
level automatically for the next tests. The value of V0
depends on the perception of each participant and is
determined prior to the obstacle warning test.

Fig. 18: Voltage level calculation

4.4 Evaluation of obstacle detection

For obstacle detection evaluation, we tested our pro-
gram with 248 images collected from MICA hallway.
Our system was evaluated on a notebook with an In-
tel Core i3 2328M processor and 6GB memory inside.
The system operates at an average speed of 2 Hz (493
ms/frame) with downsample block is 2x2 (about 75000
points in point cloud) , which is fast enough to be used
in practice.

Fig. 19 shows average detection time of each step
and the whole process.

To make evaluation, we used precision, recall and
F-measure measurement:

Precison =
TP

TP + FP

500ms

400ms

300ms

200ms

100ms
127

165
201

493

Normal
Estimation

Plane
Segmentatio

n

Obstacle
Detection Total

Fig. 19: Detection Time

and

Recall =
TP

TP + FN

F = 2
Precision ⇤Recall

Precision+Recall

where:
TP: True Positive (true detection)
FP: False Positive (object detected not in ground truth)
FN: False Negative (miss detection)

We made two di↵erent evaluations on this dataset:
pixel level and object level. For pixel level, we used
Watershed algorithm on depth image to segment object
from the background and making the ground-truth. To
evaluation, we back project the point cloud into 2D
images to make binary mask of original image where
white pixels is the detected obstacle as shown in Fig.
20. Tab. II shows the results:

Table 3: Pixel level evaluation result (TP,FP,FN: mil-
lion pixels)

TP FP FN Precision Recall F-Measure
5.02 1.31 2.11 79% 70% 74.2%

For object level, we annotate manually each object
by a rectangle and determine a true detection if the
ratio between the intersection rectangle (between de-
tected rectangle and groundtruth rectangle) and the
union rectangle is larger than 0.5. Tab. III shows the
results:

4.5 User perception evaluation

In order to evaluate the performance of the proposed
prototype system, a perception experiment was con-
ducted for users. Based on the design of the electrode

10 V. Hoang et al.

Fig. 17: Average voltage results measured on di↵erent
regions of the tongue

regions are designated based on the lowest average volt-
age which is defined as V0 in Fig. 18. They are then
written in the control program to adjust the voltage
level automatically for the next tests. The value of V0
depends on the perception of each participant and is
determined prior to the obstacle warning test.

Fig. 18: Voltage level calculation

4.4 Evaluation of obstacle detection

For obstacle detection evaluation, we tested our pro-
gram with 248 images collected from MICA hallway.
Our system was evaluated on a notebook with an In-
tel Core i3 2328M processor and 6GB memory inside.
The system operates at an average speed of 2 Hz (493
ms/frame) with downsample block is 2x2 (about 75000
points in point cloud) , which is fast enough to be used
in practice.

Fig. 19 shows average detection time of each step
and the whole process.

To make evaluation, we used precision, recall and
F-measure measurement:

Precison =
TP

TP + FP

500ms

400ms

300ms

200ms

100ms
127

165
201

493

Normal
Estimation

Plane
Segmentatio

n

Obstacle
Detection Total

Fig. 19: Detection Time

and

Recall =
TP

TP + FN

F = 2
Precision ⇤Recall

Precision+Recall

where:
TP: True Positive (true detection)
FP: False Positive (object detected not in ground truth)
FN: False Negative (miss detection)

We made two di↵erent evaluations on this dataset:
pixel level and object level. For pixel level, we used
Watershed algorithm on depth image to segment object
from the background and making the ground-truth. To
evaluation, we back project the point cloud into 2D
images to make binary mask of original image where
white pixels is the detected obstacle as shown in Fig.
20. Tab. II shows the results:

Table 3: Pixel level evaluation result (TP,FP,FN: mil-
lion pixels)

TP FP FN Precision Recall F-Measure
5.02 1.31 2.11 79% 70% 74.2%

For object level, we annotate manually each object
by a rectangle and determine a true detection if the
ratio between the intersection rectangle (between de-
tected rectangle and groundtruth rectangle) and the
union rectangle is larger than 0.5. Tab. III shows the
results:

4.5 User perception evaluation

In order to evaluate the performance of the proposed
prototype system, a perception experiment was con-
ducted for users. Based on the design of the electrode

M N

where: TP: True Positive (true detection) FP: False
Positive (object detected not in ground truth) FN: False
Negative (miss detection)

Table 1. Object detection result

We made evaluations on this dataset on object

detection. We used Watershed algorithm on depth image
to segment object from the background and making the
ground-truth. To evaluate, we back project the point
cloud into 2D images to make binary mask of original
image where white pixels is the detected obstacle as
shown in Fig. 12.

Fig 12. Obstacle Detection Result

 For the scenario test, the Pioneer LX can finish
without collision 36 trials in total 48 trials (75%).
CONCLUSION
The Mobile Robots Pioneer is designed for carrying up-
to-60 kg weight and working in indoor environment,
which is appropriate for a wheelchair accessible. The
Mobile Robot itself has the laser rangefinder sensor,
ultrasonic sonar sensor, an Ubuntu-based embedded
computer and a complete robot control system to
navigate in the flat topology. The obstacle detection
algorithm was presented for stationary obstacles. The
Kinect 3D sensor has shown that it can calculate
relatively accurate the distance to the obstacle and can
help the robot to avoid the obstacle. This work focused
on indoor environments and detection of static objects.
A scenario of completing a route along corridor using a
combination of Mobile Robot Pioneer LX and Kinect
Sensor was conducted. Three classes of obstacles were
considered and placed along the path: fire extinguisher,
flower pot, dustbin. The resulted system gives relatively
accurate detection and can instruct the robot to complete
the scenario without bumping into given obstacles. The
obstacle detection of 82.9% of precision and 75% of
route completion without collision.

ACKNOWLEDGEMENT
This work was supported and funded by Hanoi

University of Science and Technology (Hanoi, Vietnam)
under grant number T2015-055 on the research project
“Obstacle detection and classification from mobile
Kinect for robot in indoor environment”.
REFERENCES
 Fact Sheet on Visual impairment and
blindness,WHO,
www.who.int/mediacentre/factsheets/fs282/en, 2014
 Armstrong, J.D., Evaluation of man-machine
systems in the mobility of the visual handicapped.
Human Factors in Health Care R. M. Pickett and T. J.
Triggs Eds. Lexington Book, Massachusetts, 1975
 Hun C.P., Rae P.S., J. Je Hyung, Hyun P.S.,
Development of a robot arm assisting people with
disabilities at working place using task-oriented design.
9th International Conference on Rehabilitation
Robotics, (ICORR 2005), pp.482 – 487, 28 June-1 July
2005.
 Rani P., Sarkar M.S., EMG-based high level human-
robot interaction system for people with disability, IEEE
International Workshop on Robot and Human
Interactive Communication, (ROMAN 2005), pp.280 –
285, 13-15 Aug. 2005
 Mori H., and Sano M., Guide dog robot Harunobu-5
following a person, Proceedings of the IEEE/RSJ
International Workshop on Intelligent Robots and
Systems - IROS '91, Osaka, Japan, pp. 397-402,
November 3-5, 1991.
 Lee M.F.R. and Lee K.H.E., Autonomous target
tracking and following mobile robot, Journal of the
Chinese Institute of Engineers, Transactions of the
Chinese Institute of Engineers,Series A, vol. 36, pp.
502-529, 2013.
 Lee M.F.R. and Chiu F.H.S., A networked intelligent
control system for the mobile robot navigation, Proc.
2013 IEEE/SICE International Symposium on System
Integration, Kobe, Japan ,December 15-17, 2013.
 Lee M.F.R. and Chiu F.H.S., A hybrid visual servo
control system for the autonomous mobile robot, Proc.
2013 IEEE/SICE International Symposium on System
Integration, Kobe, Japan, December 15-17, 2013.

Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and
Sven Behnke, Real-time plane segmentation using rgb-d
cameras, In RoboCup 2011: Robot Soccer World Cup
XV, pp. 306–317,Springer, 2012.

Thanh Huong Nguyen received the
B.E. (2007) at Hanoi University of
Science and Technology (HUST), M.S.
(2010) at University of Twente, and
PhD (2014) degrees at University of
Grenoble. She is now a lecturer and
researcher at HUST.

Obstacle detection and warning for visually impaired people based on electrode matrix and mobile Kinect 11

Fig. 20: Obstacle Detection Result. From left to right:
Color image, Depth image, Ground truth, Detected Ob-
stacle. Blue Rectangle: Ground truth/Detected Obsta-
cle, Red Rectangle: False Obstacle

Table 4: Object level evaluation result (TP,FP,FN: ob-
jects)

TP FP FN Precision Recall F-Measure
344 71 154 82.9% 69% 75.3%

matrix and the idea of stimulation pulses, we used a se-
quence of electrodes to represent eight directions. Each
direction corresponds to one radius line and the order
of stimulating electrodes is from center to the edge of
the tongue. Five participants took part in a training
session to adapt to the device then they were asked for
randomized directions. Fig. 21 shows the average accu-
racy of perception calculated on five participants. The
electrical intensity is generated based on the perception
evaluation in Fig. 18.

Fig. 21: Average accuracy of eight direction on the
tongue.

According to the feedback of users, the edge regions
of the tongue often gives good perception. Besides, the

left and right-front parts of the tongue achieves higher
accuracy than the rear parts. As a result, the obstacle
warning representation is suitable for users.

4.6 Mobility e�ciency evaluation

The mobility test was carried out on the representations
which demonstrate good recognition by the subjects in
the previous tongue perception test. A set of six blind-
folded sighted young adults voluntarily participated in
this test. Each participant performed two trials. In each
trial, after the V0 value was determined, the participant
was first adapted without moving to associate the elec-
trical stimulations with their corresponding directions.
Then he/she started walking according to the defined
navigation path. The navigation path is displayed in
Fig. 22. The arrows and the numbers show the direc-
tion and the order of the journey, respectively. During
the test, the behaviors toward the stimulation signal
of the participants are evaluated as true, false and un-
clear responses. The di↵erent responses were recorded
and discussed.

Fig. 22: Mobility route

All the participants were trained for five minutes.
They were able to perceive the electrical signal at ease
and had no di�culties in getting used to the electrodes.
When we take a look at the Fig. 23, it is interesting to
see that the number of steps slightly went down for the
second time. This is no surprise since people adapted
and remembered the environment after one trial. As
we saw from the test participants, in the second time,
they depended less on the instruction of the device and
follow their inscrint and the route on the memory. The
number of step for most cases is around one hundred.
For sighted people the number is around seventy. The
sighted individual can walk straight to the destination
but the blindfolded people could only walk in a sinuous
zigzag line and caused the number of step to increase.

There is one case that has very large number and
one case that has very small number. For the case of the
large number, according to our observation, the partic-
ipant did a lot of considering when walking and took

Obstacle detection and warning for visually impaired people based on electrode matrix and mobile Kinect 11

Fig. 20: Obstacle Detection Result. From left to right:
Color image, Depth image, Ground truth, Detected Ob-
stacle. Blue Rectangle: Ground truth/Detected Obsta-
cle, Red Rectangle: False Obstacle

Table 4: Object level evaluation result (TP,FP,FN: ob-
jects)

TP FP FN Precision Recall F-Measure
344 71 154 82.9% 69% 75.3%

matrix and the idea of stimulation pulses, we used a se-
quence of electrodes to represent eight directions. Each
direction corresponds to one radius line and the order
of stimulating electrodes is from center to the edge of
the tongue. Five participants took part in a training
session to adapt to the device then they were asked for
randomized directions. Fig. 21 shows the average accu-
racy of perception calculated on five participants. The
electrical intensity is generated based on the perception
evaluation in Fig. 18.

Fig. 21: Average accuracy of eight direction on the
tongue.

According to the feedback of users, the edge regions
of the tongue often gives good perception. Besides, the

left and right-front parts of the tongue achieves higher
accuracy than the rear parts. As a result, the obstacle
warning representation is suitable for users.

4.6 Mobility e�ciency evaluation

The mobility test was carried out on the representations
which demonstrate good recognition by the subjects in
the previous tongue perception test. A set of six blind-
folded sighted young adults voluntarily participated in
this test. Each participant performed two trials. In each
trial, after the V0 value was determined, the participant
was first adapted without moving to associate the elec-
trical stimulations with their corresponding directions.
Then he/she started walking according to the defined
navigation path. The navigation path is displayed in
Fig. 22. The arrows and the numbers show the direc-
tion and the order of the journey, respectively. During
the test, the behaviors toward the stimulation signal
of the participants are evaluated as true, false and un-
clear responses. The di↵erent responses were recorded
and discussed.

Fig. 22: Mobility route

All the participants were trained for five minutes.
They were able to perceive the electrical signal at ease
and had no di�culties in getting used to the electrodes.
When we take a look at the Fig. 23, it is interesting to
see that the number of steps slightly went down for the
second time. This is no surprise since people adapted
and remembered the environment after one trial. As
we saw from the test participants, in the second time,
they depended less on the instruction of the device and
follow their inscrint and the route on the memory. The
number of step for most cases is around one hundred.
For sighted people the number is around seventy. The
sighted individual can walk straight to the destination
but the blindfolded people could only walk in a sinuous
zigzag line and caused the number of step to increase.

There is one case that has very large number and
one case that has very small number. For the case of the
large number, according to our observation, the partic-
ipant did a lot of considering when walking and took

