
 

 
 

FAULT DIAGNOSIS FOR WATER-HYDRAULIC 
SERVO CYLINDER SYSTEM 

WITH KALMAN FILTER 
 
 

 Shohei Tsuruda, Kazuhisa Ito 

Graduate School of Engineering and Science, Shibaura Institute of Technology 

mf14034@shibaura-it.ac.jp 
 

ABSTRACT  
 The purpose of this research is to design a system 
that does not lose controllability even when the sensor 
fails. The proposed system estimates pressure values in 
circuit with state filter. If one of the pressure sensors 
fails, this system can switch the value of pressure sensor 
to the estimated pressure. The system introduces the 
Kalman filter to estimate each pressure, because the 
pressure value is easily affected by noise.  
 In simulation, water hydraulic drive system performs 
the position control by the state feedback. A failure of 
the pressure sensor will be emulated by switching 
measurement value to a constant. Controller compares 
the information of the pressure sensor and the estimated 
value by the Kalman filter. Then controller generates the 
control input based on estimated value if the pressure 
sensor was seemed to be failed. The effectiveness was 
confirmed in simulation. 
 
1. INTRODUCTION  
 
 Water hydraulic drive systems using tap water as a 
working fluid have low environmental load and high 
cleanliness. Therefore, this system can easily be applied 
to the field of food processing and pharmaceutical 
industry [1]. Because of the relatively high bulk modulus, 
this has advantageous for applications requiring 
high-speed response. At the same time, in water 
hydraulic drive system, surge pressure is easily occured, 
then sensors and other devices in the system are likely to 
be failed. In particular, the failure of the pressure sensor 
makes impossible to maintain its control performance. 
Because, in general, all state variables including pressure 
will be required for advanced control systems. 
 In recent years, it is required that failure detection of 
system is difficult, because the complexity of the 
mechanical system is developed; for example the steel 
plant. In particular, the state variables are often assumed 

to be available in the modern control theory. Since it is 
usually impossible to install sensors to acquire all state 
variables, it is necessary to estimate them with some 
state variable filter. In generally, state estimation by the 
observer cannot consider the effect of noise. However, 
when it consider real systems, we should consider noise. 
The Kalman filter used in this research is able to 
optimally design a filter, and estimation of state value at 
online is also possible. 
 In this research, it is assumed that a pressure sensor 
installed in water-hydraulic servo cylinder system fails. 
The controller always compares the information of the 
pressure sensor and the estimated value by the Kalman 
filter. If these values deviate than specified value, 
proposed system detects failure of pressure sensor. Then 
controller generates control input based on estimated 
pressure value to maintain the control performance. 
 
2. WATER HYDRAULIC SYSTEM 
 
 Fig. 1 shows a water hydraulic circuit of a system 
used in this research. Failure of pressure sensor in this 
system means that the PA or PB cannot be obtained. 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Water-hydraulic servo cylinder system 
 
 
 



3. SYSTEM IDENTIFICATION 
 
 If system parameters are unknown or difficult to 
obtain their precise parameters, system identification 
will be used. This is a method to obtain mathematical 
model of the system based on the input and output data 
[2]. Since the denominator polynomial of the transfer 
function of water hydraulic drive system has a pure 
integrator, it diverges in the step response. In this 
research, an output feedback loop was introduced to 
make the cylinder system act as a servo system. Fig.2 
shows an M-sequence signal used for identification. 
Note that the state variables of the identification model 
has no physical meaning. Fig.3 shows the results of 
system identification, and its fitting ratio of model by 
system identification is 85.67%. Eq.(2) shows the state 
space model obtained by the system identification. 
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Fig.2 M-sequence signal of identification input 
 
 
 
 
 
 
 
 
 
 

Fig.3 Agreement of system identification result 
 

 
4. STABILIZATION STATE FEEDBACK 
CONTROLLER DESIGN 
 
 Consider the state feedback controller to stabilize the 
system Eq.(1). Here, nnRA ×∈ , 1×∈ nRB , nRC ×∈ 1 . 
Control input Eq.(3) using the state feedback gain

nRK ×∈ 1  is given by. 
 

(3) 
 

Therefore, differential Equation of state is 
 

(4) 
Fig.4 shows block diagram of Eq.(1) applied Eq.(3). 
 
 
 
 
 
 

 
Fig.4 State estimation algorithm of Kalman filter 

 
5. KALMAN FILTER 
 
 Kalman filter consists of two basic theories; the 
least-squares estimation method and the maximum 
likelihood estimation method. Therefore, optimal 
Kalman filter design for system with observation noise 
and system noise, it is possible to apply to estimate the 
state variable. Consider system Eq.(5) in discreat time. 

 
 (5) 

 
For Eq.(5), the state estimation by the Kalman filter is 
given by the following Equations [3]. 
 

(6) 
(7) 
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(10) 
 

Fig.5 shows its block diagram. 
 
 
 
 

Fig.5 Block diagram of Kalman filter 
 

Eq.(9) is a linear predictor for −x̂  and y in the same 
structure to the least squares estimation, and is updated 
with the latest measurement value in the same as the 
maximum likelihood estimation. 
 
6. SIMULATION RESULTS 
 

In this section, the failure diagnosis performance of 
proposed controller for water hydraulic cylinder system 
is examined. For a given a sensor failure, controller 
should maintain its position control performance. 

In simulation, the water hydraulic system with noise 
in Eq.(11) is considered; 

 
(11) 

 
where A, B and C are given by Eq.(2). Mean of system 
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noise v(t) and measurement noise w(t) are set to 0. 
Dispersions of system noise v(t) and measurement noise 
w(t) are given by 0.4,0.1 22 == wv σσ , respectively. For 
all simulations, the reference position is set to yref = 
10[mm]. 
 
6.1 CONVENTIONAL STATE FEEDBACK 
CONTROLLER 
  
 As a first step, the conventional state feedback 
control is designed ignoring both system measurement 
noise. Feedback gain K is designed as follows; 
 

 
Fig.6 shows the step response of simulation result with v 
= w = 0 in Eq.(11) and these effectiveness for position 
control can be confirmed. 
 
 
 
 
 
 
 
 
 
 

Fig.6 Step response with state feedback for noise free 
system 

 
Then, the sensor failure as well as system noise/ 
measurement noise are considered. Sensor failure will be 
emulated by switching the measurement value to 0 at 5 
[s]. 
 
 
 
 
 
 
 
 
 
 

(a) State variables 
 

(a) State variables 
 
 
 
 
 
 
 
 

(b) Step response 
Fig.7 Step response for pressure sensor failure 

 
 

Fig.7 shows state variables and step response of 
simulation result. From the Figure, system response 
diverged to large value and the feedback controller 
couldn’t work well because some state variable have no 
information on the system. 
 
6.2 FEEDBACK CONTROLLER WITH STATE 
ESTIMATION BY KALMAN FILTER 
 
Fig.8 to Fig.10 show the estimated state variables with 
designed Kalman filter in Eqs.(6)-(10). These Figures 
show that filtered values give estimated values 
corresponding state variables. Table 1 shows error of 
mean square of x. It found that the state estimation with 
high accuracy were achieved from the results in Table 1. 
 
 
 
 
 
 
 
 
 
 

Fig.8 state x1when pressure sensor is failure and state 
estimation by Kalman filter 

 
 
 
 
 
 
 
 
 
 

Fig.9 state x2 when pressure sensor is failure and state 
estimation by Kalman filter 

 
 
 
 
 
 
 
 
 
 
Fig.10 state x3 when pressure sensor is failure and state 

estimation by Kalman filter 
 

Table 1 x of error of mean square 
 Error of mean square 
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6.3 SWITCHING STATE FEEDBACK SYSTEM 
USING A STATE ESTIMATION VALUE BY THE 
KALMAN FILTER 
 
 Consider the case that both the noise and the pressure 
sensor failure exist. Controller switches the state value 
by Kalman filter and state value from pressure sensor 
when pressure sensor failure has been detected with 
threshold of 1 between two values. Fig.11 shows error of 
x3 of true value and estimated value. Fig.12 shows a 
switching the state estimation value by Kalman filter and 
state value from 5[s]. Fig.13 shows enlarged view of 
Fig.11. Table 2 shows y of error of mean square. 
 
 
 
 
 
 
 
 
 

 
Fig.11 Error of x3 of true value and estimated value 

 
 
 
 
 
 
 
 
 
 

Fig.12 Switched step response with pressure sensor 
failure and state estimation by Kalman filter 

 
 
 
 
 
 
 
 
 
 

Fig.13 Enlarged view of Fig.11 
 

Table 2 y of error of mean square 
 
 
 
 
We can confirm that to employ state value by Kalman 
filter is effectiveness from this result.  
 
 
 
 

7. CONCLUSION 
  
 Proposed system in this paper switches the state 
value from pressure sensor to the estimation value with 
Kalman filter when the noise is mixed and the pressure 
sensor is failure. The proposed controller generates the 
control input with estimated value. In numerical 
simulation, it is shown that state estimation by Kalman 
filter is effective.  
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NOMENCLATURE  

v  : system noise 
2
vσ  : dispersion of system noise 

w  : observation noise 
2
vσ  : dispersion of measurement noise 
−x̂  : priori state estimation 

−P  : priori Covariance matrix 

g  : Kalman gain 

x̂  : posteriori state estimation 

P  : posteriori Covariance matrix 
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